阴极
材料科学
硫化物
涂层
表面改性
兴奋剂
电解质
氧化物
电化学
尖晶石
化学工程
纳米技术
电极
光电子学
化学
冶金
物理化学
工程类
作者
Guozhong Lu,Ying Jiang,Xiang Wu,Fushan Geng,Chao Li,Bingwen Hu,Ming Shen
出处
期刊:Chemsuschem
[Wiley]
日期:2023-07-12
卷期号:16 (20)
被引量:3
标识
DOI:10.1002/cssc.202300517
摘要
Interfacial side reactions and space charge layers between the oxide cathode material and the sulfide solid-state electrolytes (SSEs), along with the structural degradation of the active material, significantly compromise the electrochemical performance of all-solid-state batteries (ASSLBs). Surface coating and bulk doping of the cathodes are considered the most effective approaches to mitigate the interface issues between the cathode and SSEs and enhance the structural integrity of composite cathodes. Here, a one-step low-cost means is ingeniously designed to modify LiCoO2 (LCO) with heterogeneous Li2 TiO3 /Li(TiMg)1/2 O2 surface coating and bulk gradient Mg doping. When applied in Li10 GeP2 S12 -based ASSLBs, the Li2 TiO3 and Li(TiMg)1/2 O2 coating layers effectively suppress interfacial side reactions and weaken space charge layer effect. Furthermore, gradient Mg doping stabilizes the bulk structure to mitigate the formation of spinel-like phases during local overcharging caused by solid-solid contact. The modified LCO cathodes exhibit excellent cycle performance with a capacity retention of 80 % after 870 cycles. This dual-functional strategy provides the possibility for large-scale commercial implementation of cathodes modification in sulfide based ASSLBs in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI