An overview on nucleic-acid G-quadruplex prediction: from rule-based methods to deep neural networks

核酸 人工智能 可解释性 计算机科学 深度学习 人工神经网络 核糖核酸 机器学习 计算生物学 DNA 生物 遗传学 基因
作者
Karin Elimelech-Zohar,Yaron Orenstein
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:9
标识
DOI:10.1093/bib/bbad252
摘要

Abstract Nucleic-acid G-quadruplexes (G4s) play vital roles in many cellular processes. Due to their importance, researchers have developed experimental assays to measure nucleic-acid G4s in high throughput. The generated high-throughput datasets gave rise to unique opportunities to develop machine-learning-based methods, and in particular deep neural networks, to predict G4s in any given nucleic-acid sequence and any species. In this paper, we review the success stories of deep-neural-network applications for G4 prediction. We first cover the experimental technologies that generated the most comprehensive nucleic-acid G4 high-throughput datasets in recent years. We then review classic rule-based methods for G4 prediction. We proceed by reviewing the major machine-learning and deep-neural-network applications to nucleic-acid G4 datasets and report a novel comparison between them. Next, we present the interpretability techniques used on the trained neural networks to learn key molecular principles underlying nucleic-acid G4 folding. As a new result, we calculate the overlap between measured DNA and RNA G4s and compare the performance of DNA- and RNA-G4 predictors on RNA- and DNA-G4 datasets, respectively, to demonstrate the potential of transfer learning from DNA G4s to RNA G4s. Last, we conclude with open questions in the field of nucleic-acid G4 prediction and computational modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼蛋丸子完成签到,获得积分10
刚刚
我是老大应助自然黄豆采纳,获得10
1秒前
一团发布了新的文献求助10
1秒前
Freya发布了新的文献求助20
1秒前
平淡尔琴完成签到,获得积分10
2秒前
huangbing123完成签到 ,获得积分10
3秒前
4秒前
SK发布了新的文献求助10
5秒前
5秒前
5秒前
笑的得美完成签到,获得积分10
7秒前
刘萄发布了新的文献求助10
8秒前
8秒前
8秒前
sky完成签到 ,获得积分10
9秒前
充电宝应助张道微采纳,获得10
9秒前
9秒前
十月完成签到 ,获得积分10
10秒前
搜集达人应助包容新蕾采纳,获得10
11秒前
12秒前
Lan完成签到 ,获得积分10
13秒前
科目三应助自然枕头采纳,获得10
13秒前
simiger完成签到,获得积分10
15秒前
Akim应助能干砖家采纳,获得10
16秒前
ma发布了新的文献求助10
16秒前
Liana_Liu完成签到,获得积分10
18秒前
joey完成签到,获得积分10
18秒前
gaoxun完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
66289发布了新的文献求助10
23秒前
小新完成签到,获得积分10
24秒前
25秒前
和谐的如柏完成签到,获得积分10
25秒前
gaoxun发布了新的文献求助10
27秒前
张道微发布了新的文献求助10
27秒前
迟早year完成签到,获得积分10
29秒前
整齐雁芙应助古炮采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511