Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection

特征(语言学) 人工智能 鉴别器 棱锥(几何) 保险丝(电气) 计算机科学 模式识别(心理学) 纱线 特征提取 发电机(电路理论) 骨干网 特征学习 计算机视觉 工程类 数学 电气工程 功率(物理) 哲学 物理 几何学 探测器 机械工程 电信 量子力学 语言学 计算机网络
作者
Hongwei Zhang,Guanhua Qiao,Shuai Lu,Le Yao,Xia Chen
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (5-6): 1178-1195 被引量:35
标识
DOI:10.1177/00405175221129654
摘要

Defects on the surface of yarn-dyed fabrics are one of the important factors affecting the quality of fabrics. Defect detection is the core link of quality control. Due to the diversity of yarn-dyed fabric patterns and the scarcity of defect samples, reconstruction-based unsupervised deep learning algorithms have received extensive attention in the field of fabric defect detection. However, most existing deep learning algorithms cannot fully extract shallow, high-frequency and high-level information, which limits their ability to reconstruct yarn-dyed fabric images. In this article, we propose an Attention-based Feature Fusion Generative Adversarial Network framework for unsupervised defect detection of yarn-dyed fabrics. The framework utilizes a modified Feature Pyramid Network to fuse multi-level information and utilizes an attention mechanism to enhance the model's feature representation capabilities. The Attention-based Feature Fusion Generative Adversarial Network consists of an attention fusion generator and a patch-level discriminator. In the attention fusion generator, the Feature Pyramid Network with EfficientNetV2 as the backbone is used as the core building block, and different feature fusion methods are used to avoid the loss of information in the process of network deepening. The attention mechanism is used to enhance the channel and spatial-wise correlation of features, which helps the model to focus on more meaningful information by recalibrating the feature maps. In the discriminator, the patch-level discriminator is used to calculate the similarity between the reconstructed image and the original image from a local perspective, thereby improving the model's attention to texture details. Experimental results on public datasets demonstrate the effectiveness of the proposed method compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy1201应助Jiao采纳,获得10
刚刚
刚刚
ZSH发布了新的文献求助10
刚刚
王檬发布了新的文献求助10
1秒前
james发布了新的文献求助50
2秒前
英姑应助神勇的梦凡采纳,获得10
2秒前
2秒前
shisui驳回了Hello应助
2秒前
可爱的函函应助霜二采纳,获得10
2秒前
3秒前
mmRadio发布了新的文献求助10
4秒前
oh应助樱桃小王子采纳,获得10
5秒前
北顾发布了新的文献求助10
5秒前
斯文败类应助wyx采纳,获得10
7秒前
FashionBoy应助AAA科研民工采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得50
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
粒橙酱发布了新的文献求助10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得100
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
加菲丰丰应助科研通管家采纳,获得30
8秒前
田様应助xian采纳,获得10
8秒前
8秒前
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
小马甲应助小咩采纳,获得10
9秒前
9秒前
cllcx发布了新的文献求助10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014