Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection

特征(语言学) 人工智能 鉴别器 棱锥(几何) 保险丝(电气) 计算机科学 模式识别(心理学) 纱线 特征提取 发电机(电路理论) 骨干网 特征学习 计算机视觉 工程类 数学 机械工程 电信 计算机网络 哲学 语言学 功率(物理) 几何学 物理 量子力学 探测器 电气工程
作者
Hongwei Zhang,Guanhua Qiao,Shuai Lu,Le Yao,Xia Chen
出处
期刊:Textile Research Journal [SAGE]
卷期号:93 (5-6): 1178-1195 被引量:35
标识
DOI:10.1177/00405175221129654
摘要

Defects on the surface of yarn-dyed fabrics are one of the important factors affecting the quality of fabrics. Defect detection is the core link of quality control. Due to the diversity of yarn-dyed fabric patterns and the scarcity of defect samples, reconstruction-based unsupervised deep learning algorithms have received extensive attention in the field of fabric defect detection. However, most existing deep learning algorithms cannot fully extract shallow, high-frequency and high-level information, which limits their ability to reconstruct yarn-dyed fabric images. In this article, we propose an Attention-based Feature Fusion Generative Adversarial Network framework for unsupervised defect detection of yarn-dyed fabrics. The framework utilizes a modified Feature Pyramid Network to fuse multi-level information and utilizes an attention mechanism to enhance the model's feature representation capabilities. The Attention-based Feature Fusion Generative Adversarial Network consists of an attention fusion generator and a patch-level discriminator. In the attention fusion generator, the Feature Pyramid Network with EfficientNetV2 as the backbone is used as the core building block, and different feature fusion methods are used to avoid the loss of information in the process of network deepening. The attention mechanism is used to enhance the channel and spatial-wise correlation of features, which helps the model to focus on more meaningful information by recalibrating the feature maps. In the discriminator, the patch-level discriminator is used to calculate the similarity between the reconstructed image and the original image from a local perspective, thereby improving the model's attention to texture details. Experimental results on public datasets demonstrate the effectiveness of the proposed method compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
宁小满发布了新的文献求助10
3秒前
3秒前
Yangyang完成签到,获得积分0
4秒前
闻歌发布了新的文献求助10
5秒前
辞忧完成签到,获得积分10
5秒前
忆茶戏完成签到,获得积分10
5秒前
咕噜发布了新的文献求助10
7秒前
假面绅士发布了新的文献求助10
8秒前
山复尔尔发布了新的文献求助10
8秒前
冯涛完成签到,获得积分10
9秒前
RuiLi完成签到,获得积分10
9秒前
FashionBoy应助闻歌采纳,获得10
9秒前
9秒前
凌晨四点半完成签到,获得积分10
12秒前
NexusExplorer应助假面绅士采纳,获得10
13秒前
1GE完成签到,获得积分10
14秒前
Akim应助朕是大皇帝采纳,获得10
15秒前
Star发布了新的文献求助30
15秒前
咕噜完成签到,获得积分10
18秒前
庾储完成签到,获得积分10
18秒前
Bwq完成签到 ,获得积分20
18秒前
壮观冷卉完成签到,获得积分10
20秒前
发现发布了新的文献求助30
21秒前
HA380发布了新的文献求助10
21秒前
完美世界应助wangye采纳,获得10
22秒前
Ava应助小奶球采纳,获得10
23秒前
xingcheng完成签到,获得积分10
25秒前
26秒前
28秒前
我爱酸菜鱼完成签到,获得积分10
28秒前
初染完成签到,获得积分10
29秒前
32秒前
32秒前
Xiaque完成签到 ,获得积分10
33秒前
这样挺好的完成签到,获得积分20
33秒前
35秒前
Kleen完成签到 ,获得积分10
36秒前
玉玉完成签到,获得积分10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210