电解质
金属锂
阳极
电镀
电镀(地质)
电流(流体)
锂(药物)
材料科学
电池(电)
电流密度
阴极
纳米技术
化学工程
化学
电极
电气工程
物理
物理化学
图层(电子)
内分泌学
医学
功率(物理)
工程类
量子力学
地球物理学
地质学
作者
David Boyle,Yuzhang Li,Allen Pei,Rafael A. Vilá,Zewen Zhang,Philaphon Sayavong,Mun Sek Kim,William Huang,Hongxia Wang,Yunzhi Liu,Rong Xu,Robert Sinclair,Jian Qin,Zhenan Bao,Yi Cui
出处
期刊:Nano Letters
[American Chemical Society]
日期:2022-10-10
卷期号:22 (20): 8224-8232
被引量:51
标识
DOI:10.1021/acs.nanolett.2c02792
摘要
Poor fast-charge capabilities limit the usage of rechargeable Li metal anodes. Understanding the connection between charging rate, electroplating mechanism, and Li morphology could enable fast-charging solutions. Here, we develop a combined electroanalytical and nanoscale characterization approach to resolve the current-dependent regimes of Li plating mechanisms and morphology. Measurement of Li+ transport through the solid electrolyte interphase (SEI) shows that low currents induce plating at buried Li||SEI interfaces, but high currents initiate SEI-breakdown and plating at fresh Li||electrolyte interfaces. The latter pathway can induce uniform growth of {110}-faceted Li at extremely high currents, suggesting ion-transport limitations alone are insufficient to predict Li morphology. At battery relevant fast-charging rates, SEI-breakdown above a critical current density produces detrimental morphology and poor cyclability. Thus, prevention of both SEI-breakdown and slow ion-transport in the electrolyte is essential. This mechanistic insight can inform further electrolyte engineering and customization of fast-charging protocols for Li metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI