Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 几何学 计算机视觉 光学 物理
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Jorna采纳,获得10
刚刚
刚刚
小可乐发布了新的文献求助10
刚刚
22发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
巴拉巴拉巴完成签到,获得积分10
4秒前
宓广缘完成签到,获得积分10
5秒前
lettuce完成签到,获得积分10
5秒前
6秒前
6秒前
调皮的又菱完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
dw完成签到,获得积分20
7秒前
Hey发布了新的文献求助10
7秒前
7秒前
晓MING发布了新的文献求助10
8秒前
8秒前
8秒前
木耳发布了新的文献求助30
8秒前
8秒前
披风发布了新的文献求助10
9秒前
Nakyseo完成签到,获得积分10
9秒前
wanci应助cctoday采纳,获得10
9秒前
lonelymusic完成签到,获得积分10
9秒前
认真千凡完成签到,获得积分10
10秒前
兴奋中道发布了新的文献求助10
10秒前
10秒前
暗夜男完成签到 ,获得积分10
10秒前
talksilence完成签到,获得积分10
11秒前
orixero应助武雨珍采纳,获得30
11秒前
11秒前
五六七完成签到,获得积分10
11秒前
kkai发布了新的文献求助20
12秒前
王小二发布了新的文献求助10
12秒前
bbll完成签到,获得积分10
13秒前
郝宝真发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587