Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 计算机视觉 物理 几何学 光学
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳雨完成签到 ,获得积分20
刚刚
二七发布了新的文献求助10
1秒前
独特冰安发布了新的文献求助10
2秒前
3秒前
不吃西瓜发布了新的文献求助10
3秒前
天真慕灵发布了新的文献求助10
3秒前
聪慧的怀绿完成签到,获得积分10
3秒前
wjx关闭了wjx文献求助
5秒前
ty发布了新的文献求助10
6秒前
XHK完成签到,获得积分10
6秒前
江夏清发布了新的文献求助10
7秒前
zlx完成签到,获得积分10
8秒前
二七完成签到,获得积分10
8秒前
wjx关闭了wjx文献求助
9秒前
调皮正豪完成签到,获得积分10
10秒前
英姑应助西西采纳,获得10
10秒前
迷人的天抒应助nczpf2010采纳,获得10
11秒前
清逸之风完成签到 ,获得积分10
11秒前
11秒前
wjx关闭了wjx文献求助
16秒前
高挑的若剑关注了科研通微信公众号
16秒前
19秒前
wjx关闭了wjx文献求助
20秒前
幸运星辰完成签到 ,获得积分10
21秒前
黄辉冯完成签到,获得积分10
21秒前
21秒前
22秒前
书中魂我自不理会完成签到 ,获得积分10
22秒前
Cherry完成签到,获得积分10
22秒前
23秒前
卡卡发布了新的文献求助50
24秒前
大老黑完成签到,获得积分10
24秒前
fisheepyy发布了新的文献求助10
24秒前
大模型应助仲夏采纳,获得10
24秒前
CodeCraft应助欣慰的乌冬面采纳,获得10
26秒前
26秒前
ll应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
27秒前
ll应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305