Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 几何学 计算机视觉 光学 物理
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷六发布了新的文献求助10
刚刚
情怀应助我爱科研采纳,获得10
1秒前
漂亮谷雪完成签到,获得积分10
1秒前
1秒前
wang1030发布了新的文献求助50
1秒前
2秒前
Genetrix应助Jenny采纳,获得30
3秒前
4秒前
lijiajun发布了新的文献求助10
4秒前
4秒前
4秒前
litieniu完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
核桃发布了新的文献求助10
6秒前
彭于晏应助茶米采纳,获得10
6秒前
和谐无敌完成签到,获得积分10
6秒前
帝释天I发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
wyq完成签到,获得积分10
8秒前
东方傲儿发布了新的文献求助10
8秒前
8秒前
9秒前
仁爱的觅夏完成签到,获得积分10
9秒前
BEMJ发布了新的文献求助30
9秒前
zmc_297完成签到,获得积分10
9秒前
裤里发布了新的文献求助10
9秒前
fjhsg25发布了新的文献求助10
9秒前
隐形曼青应助LXL采纳,获得10
10秒前
11秒前
12秒前
13秒前
深情安青应助cccc采纳,获得10
13秒前
13秒前
细心擎呢发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133