Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 几何学 计算机视觉 光学 物理
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zasideler完成签到,获得积分10
刚刚
刚刚
柳贯一完成签到,获得积分10
1秒前
51545645完成签到,获得积分10
1秒前
忧郁凡桃完成签到,获得积分10
1秒前
2秒前
科目三应助zhzh0618采纳,获得10
3秒前
Slemon完成签到,获得积分10
3秒前
小马甲应助Judson采纳,获得10
3秒前
追寻绮玉完成签到,获得积分10
3秒前
天真枫发布了新的文献求助10
3秒前
橙子完成签到,获得积分10
3秒前
jenningseastera完成签到,获得积分0
4秒前
dwct发布了新的文献求助10
4秒前
4秒前
4秒前
神鸢发布了新的文献求助10
4秒前
晓世完成签到,获得积分10
5秒前
柔弱静柏完成签到,获得积分10
5秒前
沉静的迎荷完成签到,获得积分10
5秒前
研友_8yX0xZ完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
stg完成签到,获得积分10
7秒前
伙腿长发布了新的文献求助10
7秒前
斯文败类应助关于我采纳,获得20
7秒前
Lolo发布了新的文献求助50
8秒前
8秒前
Ava应助xiaoju采纳,获得10
8秒前
杨半鬼发布了新的文献求助30
8秒前
9秒前
积极的雁风完成签到,获得积分10
9秒前
曹孟德完成签到,获得积分10
10秒前
糖哦完成签到,获得积分10
10秒前
嘉平三十发布了新的文献求助10
10秒前
了了完成签到 ,获得积分10
10秒前
如意雅山完成签到,获得积分10
11秒前
kings完成签到,获得积分10
11秒前
orixero应助帕丁顿采纳,获得10
12秒前
雪落完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977