Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 几何学 计算机视觉 光学 物理
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭郭发布了新的文献求助10
刚刚
是小程啊发布了新的文献求助10
刚刚
完美世界应助沙拉酱采纳,获得10
1秒前
1335804518发布了新的文献求助10
1秒前
Helium发布了新的文献求助10
1秒前
bkagyin应助Yoooo采纳,获得10
1秒前
Akim应助欣忆采纳,获得10
1秒前
keke完成签到,获得积分10
2秒前
方梓言发布了新的文献求助10
2秒前
年轻的小可完成签到 ,获得积分10
2秒前
2秒前
maodou发布了新的文献求助10
2秒前
Lee发布了新的文献求助10
2秒前
轻松戎发布了新的文献求助10
3秒前
3秒前
kwb完成签到,获得积分10
3秒前
ava425完成签到,获得积分10
3秒前
科研通AI6应助努力考博采纳,获得10
3秒前
Pluto完成签到,获得积分10
3秒前
无花果应助赵鹏采纳,获得10
4秒前
4秒前
zxb发布了新的文献求助10
4秒前
蒲公英完成签到,获得积分10
4秒前
apt发布了新的文献求助10
4秒前
4秒前
君无邪完成签到,获得积分10
4秒前
5秒前
yyang完成签到,获得积分10
5秒前
科研通AI6应助七qiqi采纳,获得10
6秒前
52LSR发布了新的文献求助10
6秒前
务实羽毛发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
BowieHuang应助轻松戎采纳,获得10
7秒前
蒲公英发布了新的文献求助10
7秒前
8秒前
8秒前
fahbfafajk发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700