Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

结构健康监测 偏转(物理) 结构工程 相关系数 时域 相关性 工程类 计算机科学 统计 数学 几何学 计算机视觉 光学 物理
作者
Yang Deng,Hanwen Ju,Wenqiang Zhai,Aiqun Li,Youliang Ding
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:3
标识
DOI:10.1002/stc.3113
摘要

Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time-continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short-, medium-, and long-term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature- and vehicle-induced deflection components is proposed. The results show that the predicted deflection of the short-term correlation model is basically consistent with the real-time monitoring data, while the medium- and long-term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature- and vehicle-induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sky发布了新的文献求助10
1秒前
Zyc发布了新的文献求助10
1秒前
唐盼烟完成签到,获得积分20
4秒前
花花发布了新的文献求助10
4秒前
7秒前
NexusExplorer应助ming采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
枭声应助科研通管家采纳,获得10
9秒前
yanyan应助科研通管家采纳,获得30
9秒前
Sea_U应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
yanyan应助科研通管家采纳,获得15
9秒前
子昂应助科研通管家采纳,获得10
9秒前
所所应助LockheedChengdu采纳,获得10
11秒前
科研搬运工完成签到,获得积分10
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
shiyin完成签到,获得积分10
13秒前
13秒前
HarrisonChan完成签到,获得积分10
15秒前
16秒前
陈秋迎发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044