FEDResNet: a flexible image encryption and decryption scheme based on end-to-end image diffusion with dilated ResNet

加密 计算机科学 明文 密文 争先恐后 人工智能 图像(数学) 计算机视觉 钥匙(锁) 混沌(操作系统) 计算机安全 算法
作者
Leqing Zhu,Weiwei Qu,Xingyang Wen,Chunxiang Zhu
出处
期刊:Applied Optics [The Optical Society]
卷期号:61 (31): 9124-9124 被引量:9
标识
DOI:10.1364/ao.469155
摘要

Image encryption has emerged as a method of disguising an image with a noisy or meaningless appearance to prevent its content from being accessed by unauthorized users. We propose an architecture named flexible image encryption and decryption ResNet (FEDResNet) for diffusing an image in end-to-end mode. The architecture consists of an encryption network for diffusing the image and a decryption network for restoring the plaintext image from the diffused image. To enhance the security of the encrypted image, the diffused image is further processed with two optional operations: parallel scrambling and serial diffusion. Two key planes are constructed based on a user-defined key with a chaotic map to control the authority to access images. The structure and parameters of FEDResNet can be shared publicly by different users; hence, it is more flexible and convenient than previous deep-learning-based image encryption methods. A classification network is trained to classify medical images in ciphertext environments. The proposed FEDResNet is trained and tested on the ImageNet data set. Extensive experiments have been performed, and the experimental results suggest that the proposed model can achieve a high level of security with satisfactory efficiency. The experimental results also show that FEDResNet-encrypted images can be classified directly in the ciphertext domain by authorized users as accurately as plaintext images, which is a superior property that is not possessed by traditional image encryption methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡凡发布了新的文献求助10
刚刚
刘奇发布了新的文献求助10
3秒前
麻花发布了新的文献求助10
4秒前
科研通AI6应助lulu采纳,获得10
4秒前
科研通AI6应助lulu采纳,获得10
4秒前
米粒之珠亦放光华完成签到,获得积分10
5秒前
5秒前
风趣问蕊完成签到,获得积分10
6秒前
dwclongy完成签到,获得积分10
6秒前
斯文焱发布了新的文献求助10
7秒前
关关过应助加油通采纳,获得20
7秒前
量子星尘发布了新的文献求助10
10秒前
炙热冰蓝完成签到,获得积分10
10秒前
cicytjsxjr发布了新的文献求助10
11秒前
杨怂怂完成签到 ,获得积分10
12秒前
星辰大海应助dwclongy采纳,获得10
12秒前
宁_宁发布了新的文献求助10
13秒前
我是老大应助麻花采纳,获得10
14秒前
15秒前
kaka完成签到 ,获得积分10
16秒前
17秒前
CodeCraft应助汪宇采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
科目三应助mu采纳,获得10
19秒前
爱听歌小蚂蚁关注了科研通微信公众号
19秒前
一种信仰完成签到 ,获得积分10
19秒前
19秒前
顾矜应助淡淡的觅松采纳,获得10
20秒前
23秒前
mount完成签到,获得积分10
25秒前
斯文败类应助long采纳,获得10
26秒前
27秒前
Orange应助作业对不起采纳,获得10
28秒前
28秒前
31秒前
mu发布了新的文献求助10
32秒前
风清扬应助科研通管家采纳,获得30
33秒前
蒹葭苍苍应助科研通管家采纳,获得10
34秒前
风清扬应助科研通管家采纳,获得30
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896