Refining DIIS algorithms for Si and GaAs solar cells: incorporation of weight regularization, conjugate gradient, and reverse automatic differentiation techniques

计算机科学 算法 趋同(经济学) 共轭梯度法 理论(学习稳定性) 正规化(语言学) 人工智能 机器学习 经济 经济增长
作者
Zhaosheng Zhang,Sijia Liu,Yingjie Zhang
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:26 (16): 12717-12724
标识
DOI:10.1039/d4cp00456f
摘要

Pivotal enhancements in electronic minimization algorithms, which are vital for the advancement of computational materials science, are introduced in this research. Our research is dedicated to refining the DIIS algorithm specifically for electronic structure calculations of silicon (Si) and gallium arsenide (GaAs) solar cells, aiming to enhance their efficiency and stability. We have enriched DIIS by integrating a weight regularization factor, significantly bolstering its convergence stability. This modification enhances iteration robustness and curtails the average iteration duration, thus streamlining the convergence process. Furthermore, we have incorporated the conjugate gradient (CG) algorithm to proficiently resolve symmetric positive definite residual matrices. This inclusion substantially accelerates the solution-finding process within the DIIS framework. A novel aspect of our research is the application of reverse automatic differentiation (AD), deployed in two distinct methodologies: the construction of the Jacobian matrix and direct chain rule application for gradient computation. These approaches involve sophisticated mathematical techniques that enhance computational precision and efficiency specifically for Si and GaAs solar cell materials in determining the optimal weights for residual combinations during DIIS iterations. The integration of these advanced methods into the DIIS algorithm not only augments its convergence stability but also ensures a substantial reduction in total computational time. Our findings demonstrate that the enhanced DIIS, CG-enhanced DIIS, and AD-integrated DIIS methods collectively lead to a more efficient electronic minimization process. This balance of stability and efficiency is crucial in high-performance computational materials science, particularly for complex systems analysis. The findings of this research represent a notable advancement in computational strategies for Si and GaAs solar cell materials, providing enhanced methodologies and insights that significantly improve the efficiency and stability of electronic structure calculations in these critical components of renewable energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liiy发布了新的文献求助10
刚刚
1秒前
ljz910005完成签到,获得积分10
1秒前
xuexue0001完成签到,获得积分10
2秒前
小蘑菇应助凸迩丝儿采纳,获得10
2秒前
snow发布了新的文献求助10
4秒前
pbc完成签到,获得积分10
4秒前
我是老大应助KV采纳,获得10
5秒前
善学以致用应助最专业采纳,获得10
7秒前
刘依梦完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
毛豆应助奋斗时光采纳,获得10
10秒前
11秒前
阳佟水蓉完成签到,获得积分10
12秒前
专注的语堂完成签到,获得积分10
12秒前
12秒前
完美世界应助liiy采纳,获得10
13秒前
YoYo发布了新的文献求助10
13秒前
凸迩丝儿发布了新的文献求助10
14秒前
猜不猜不发布了新的文献求助10
15秒前
15秒前
荼蘼发布了新的文献求助30
15秒前
可爱的小丸子完成签到,获得积分10
16秒前
16秒前
感动归尘发布了新的文献求助10
17秒前
蟹蟹发布了新的文献求助10
18秒前
18秒前
Zzt0527关注了科研通微信公众号
18秒前
20秒前
aka2012发布了新的文献求助10
20秒前
枫老板完成签到,获得积分10
20秒前
花城完成签到,获得积分20
21秒前
23秒前
鲁西西发布了新的文献求助10
23秒前
模糊中正应助蟹蟹采纳,获得10
23秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271