FedDUS: Lung tumor segmentation on CT images through federated semi-supervised with dynamic update strategy

计算机科学 分割 注释 人工智能 钥匙(锁) 深度学习 自动化 编码(集合论) 机器学习 质量(理念) 监督学习 数据挖掘 人工神经网络 机械工程 计算机安全 集合(抽象数据类型) 工程类 程序设计语言 哲学 认识论
作者
Dan Wang,Chu Han,Zhen Zhang,Tian‐Tian Zhai,Huan Lin,Baoyao Yang,Yanfen Cui,Yinbing Lin,Z Zhao,Lujun Zhao,Changhong Liang,An Zeng,Dan Pan,Xin Chen,Zhenwei Shi,Zaiyi Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:249: 108141-108141
标识
DOI:10.1016/j.cmpb.2024.108141
摘要

Background and Objective: Lung tumor annotation is a key upstream task for further diagnosis and prognosis. Although deep learning techniques have promoted automation of lung tumor segmentation, there remain challenges impeding its application in clinical practice, such as a lack of prior annotation for model training and data-sharing among centers. Methods: In this paper, we use data from six centers to design a novel federated semi-supervised learning (FSSL) framework with dynamic model aggregation and improve segmentation performance for lung tumors. To be specific, we propose a dynamically updated algorithm to deal with model parameter aggregation in FSSL, which takes advantage of both the quality and quantity of client data. Moreover, to increase the accessibility of data in the federated learning (FL) network, we explore the FAIR data principle while the previous federated methods never involve. Result: The experimental results show that the segmentation performance of our model in six centers is 0.9348, 0.8436, 0.8328, 0.7776, 0.8870 and 0.8460 respectively, which is superior to traditional deep learning methods and recent federated semi-supervised learning methods. Conclusion: The experimental results demonstrate that our method is superior to the existing FSSL methods. In addition, our proposed dynamic update strategy effectively utilizes the quality and quantity information of client data and shows efficiency in lung tumor segmentation. The source code is released on (https://github.com/GDPHMediaLab/FedDUS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rocky完成签到 ,获得积分10
1秒前
美丽的依霜完成签到 ,获得积分10
3秒前
yu给yu的求助进行了留言
3秒前
echo完成签到,获得积分10
3秒前
SYLH应助英勇凝旋采纳,获得10
3秒前
嘭嘭嘭完成签到,获得积分10
4秒前
景穆完成签到,获得积分10
4秒前
杳鸢应助典雅的毛巾采纳,获得10
4秒前
bkagyin应助shanshanlaichi采纳,获得10
4秒前
春天完成签到 ,获得积分10
4秒前
4秒前
5秒前
加菲猫发布了新的文献求助20
5秒前
华仔应助风中的小白菜采纳,获得10
5秒前
6秒前
6秒前
哇哇哇哇我应助半斤采纳,获得20
6秒前
7秒前
ypz完成签到,获得积分10
8秒前
8秒前
姜菡发布了新的文献求助10
8秒前
爱吃香菜完成签到 ,获得积分10
8秒前
594zqz完成签到,获得积分10
9秒前
天天快乐应助遇晴采纳,获得10
10秒前
苹果骑士完成签到,获得积分10
10秒前
椰子狗完成签到,获得积分10
11秒前
许一完成签到,获得积分10
11秒前
打打应助李晓凤采纳,获得10
12秒前
sby19发布了新的文献求助30
12秒前
台灯没电了完成签到,获得积分10
12秒前
氯化钡完成签到 ,获得积分10
12秒前
啥也不会完成签到,获得积分10
14秒前
燕子发布了新的文献求助30
14秒前
Ximeng李1128完成签到,获得积分10
15秒前
17秒前
mayisang完成签到,获得积分10
17秒前
17秒前
寒冷的灵完成签到,获得积分10
17秒前
爆米花应助无情的宛儿采纳,获得20
18秒前
不懈奋进应助现代的傻姑采纳,获得30
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993