Imbalanced Data Classification with Fuzzy Logic and Universal Image Fusion for Gearbox Defect Detection

模糊逻辑 人工智能 计算机科学 传感器融合 计算机视觉 图像(数学) 融合 图像融合 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Amir Hossein Barshooi,Alireza Yazdanijoo,Elmira Bagheri,Ashkan Moosavian
标识
DOI:10.1109/aisp61396.2024.10475291
摘要

Finding data with different appearance defects and imaging them on a large scale is a laborious and costly affair. In this paper, an image-based model for detecting and classifying defects on various surfaces such as metal, wood, carbon fiber, concrete and fabric structures is provided. The model is designed to work with limited and class-imbalanced data. In this model, the Universal Image Fusion (UIF) block is embedded. This block gives a comprehensive view of the distribution of defects, their dimensions, and their location on the surfaces. To make fake defective images, the defects are cropped from the defective images and fused according to the distribution map, with gradient masks on the defect-free surfaces. Next, extracting texture features from images was improved with the help of Fuzzy Inference Systems (FIS) with Gaussian membership function and Sobel operator. Images were classified into two classes, defective and non-defective, with the participation of three networks, VGG-16, InceptionV3, and Resnet-50. The presented model was implemented on a dataset of gearbox components with imbalance data and was able to achieve 97.87% accuracy, 98.59% precision, 98.55% specificity, 97.90% F1 score, 97.22% sensitivity, and 0.9577 informedness (Youden's J statistic). The demo is available via https://github.com/DeepCar/Gearbox-Defect-Detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上小霜关注了科研通微信公众号
刚刚
1秒前
1秒前
zp发布了新的文献求助10
1秒前
宇清发布了新的文献求助10
2秒前
2秒前
车访枫完成签到 ,获得积分10
2秒前
2秒前
orixero应助潇笑采纳,获得10
3秒前
苏灿应助哈哈哈采纳,获得10
3秒前
上官若男应助大鲁采纳,获得10
3秒前
无辜澜发布了新的文献求助10
3秒前
3秒前
4秒前
ljh发布了新的文献求助10
4秒前
orixero应助追寻迎蓉采纳,获得10
5秒前
我爱Chem发布了新的文献求助10
5秒前
询鲤完成签到,获得积分20
5秒前
小小完成签到 ,获得积分10
5秒前
Owen应助L112233采纳,获得10
5秒前
许一发布了新的文献求助10
6秒前
开朗万天完成签到 ,获得积分10
7秒前
jnoker完成签到 ,获得积分10
7秒前
7秒前
华仔应助李月采纳,获得10
7秒前
文献求助发布了新的文献求助10
7秒前
7秒前
小钱全发布了新的文献求助30
7秒前
8秒前
可爱的函函应助mm采纳,获得10
8秒前
科目三应助Stroeve采纳,获得10
8秒前
9秒前
CodeCraft应助婷婷婷不停采纳,获得10
9秒前
无辜澜完成签到,获得积分10
10秒前
打打应助犹豫的棒棒糖采纳,获得10
10秒前
bilibala完成签到,获得积分10
10秒前
10秒前
11秒前
玮玮发布了新的文献求助10
11秒前
IMkily完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033