Imbalanced Data Classification with Fuzzy Logic and Universal Image Fusion for Gearbox Defect Detection

模糊逻辑 人工智能 计算机科学 传感器融合 计算机视觉 图像(数学) 融合 图像融合 模式识别(心理学) 数据挖掘 语言学 哲学
作者
Amir Hossein Barshooi,Alireza Yazdanijoo,Elmira Bagheri,Ashkan Moosavian
标识
DOI:10.1109/aisp61396.2024.10475291
摘要

Finding data with different appearance defects and imaging them on a large scale is a laborious and costly affair. In this paper, an image-based model for detecting and classifying defects on various surfaces such as metal, wood, carbon fiber, concrete and fabric structures is provided. The model is designed to work with limited and class-imbalanced data. In this model, the Universal Image Fusion (UIF) block is embedded. This block gives a comprehensive view of the distribution of defects, their dimensions, and their location on the surfaces. To make fake defective images, the defects are cropped from the defective images and fused according to the distribution map, with gradient masks on the defect-free surfaces. Next, extracting texture features from images was improved with the help of Fuzzy Inference Systems (FIS) with Gaussian membership function and Sobel operator. Images were classified into two classes, defective and non-defective, with the participation of three networks, VGG-16, InceptionV3, and Resnet-50. The presented model was implemented on a dataset of gearbox components with imbalance data and was able to achieve 97.87% accuracy, 98.59% precision, 98.55% specificity, 97.90% F1 score, 97.22% sensitivity, and 0.9577 informedness (Youden's J statistic). The demo is available via https://github.com/DeepCar/Gearbox-Defect-Detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
害怕的帽子完成签到 ,获得积分10
刚刚
1秒前
2秒前
寇博翔发布了新的文献求助10
3秒前
烂漫的飞松完成签到,获得积分10
3秒前
苹果冬莲完成签到,获得积分10
3秒前
去心邻域完成签到,获得积分10
4秒前
天地一体完成签到,获得积分10
7秒前
9秒前
梦玲完成签到 ,获得积分10
9秒前
小二郎应助可可奇采纳,获得10
12秒前
13秒前
慕青应助tguczf采纳,获得10
13秒前
14秒前
14秒前
NexusExplorer应助小高采纳,获得10
14秒前
张贵虎完成签到 ,获得积分10
15秒前
李兴完成签到 ,获得积分10
15秒前
16秒前
华仔应助11采纳,获得10
16秒前
研友_VZG7GZ应助竹寺采纳,获得10
16秒前
脑洞疼应助jetwang采纳,获得200
17秒前
18秒前
19秒前
19秒前
清脆的台灯完成签到,获得积分10
19秒前
挽风发布了新的文献求助10
19秒前
stone完成签到,获得积分10
20秒前
郁乾完成签到,获得积分10
20秒前
20秒前
砼砼完成签到,获得积分10
22秒前
22秒前
22秒前
123完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
无限无心完成签到,获得积分10
24秒前
25秒前
ljz发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867