A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs

计算机科学 模因算法 作业车间调度 数学优化 流水车间调度 工作车间 调度(生产过程) 算法 局部搜索(优化) 地铁列车时刻表 数学 操作系统
作者
Youjie Yao,Xinyu Li,Liang Gao
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:87: 101544-101544 被引量:13
标识
DOI:10.1016/j.swevo.2024.101544
摘要

AGVs have gained significant popularity in various industries. However, the existing literature rarely considers the integrated scheduling of production and logistics on the workshop due to the NP-hard property of both machine scheduling and AGV scheduling. The energy-efficient job shop scheduling problem with limited AGVs is investigated in this paper. A multi-objective memetic algorithm with deep Q-network (DQNMMA) is proposed to minimize the makespan and total energy consumption. In DQNMMA, ten features are selected to describe the current state of the population. This enables the DQN to dynamically adjust the crossover probability according to the population evolution. Formulas for calculating the head length and tail length of each node in the disjunctive graph model are presented for the first time to enable fast and accurate access to the critical paths. Building upon the analysis of critical paths, four problem properties are developed as the foundation for designing six neighborhood operators. Then, a property-based variable neighborhood search strategy is proposed to enhance the exploration capability of the algorithm. Numerous experimental results demonstrate that the proposed approaches can effectively enhance the performance of the algorithm, especially in solving large-scale problems. The comparative analysis with three other state-of-the-art multi-objective algorithms confirms the superiority and effectiveness of the proposed DQNMMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿豆饼完成签到,获得积分10
2秒前
3秒前
4秒前
cookie11111发布了新的文献求助20
5秒前
6秒前
6秒前
Sammy发布了新的文献求助10
6秒前
科目三应助MR_芝欧采纳,获得10
7秒前
晨曦完成签到 ,获得积分10
7秒前
9秒前
10秒前
大模型应助zhenganw采纳,获得10
12秒前
亲豆丁儿发布了新的文献求助10
12秒前
司空豁举报知年求助涉嫌违规
13秒前
13秒前
可爱的函函应助晓晓采纳,获得10
16秒前
17秒前
如寄完成签到,获得积分10
17秒前
半柚发布了新的文献求助10
17秒前
18秒前
MR_芝欧完成签到,获得积分10
18秒前
19秒前
CipherSage应助WHY采纳,获得10
20秒前
Linnae应助gao采纳,获得10
20秒前
22秒前
研友_VZG7GZ应助快乐小蕊采纳,获得10
23秒前
所所应助唠嗑在呐采纳,获得10
23秒前
亲豆丁儿完成签到,获得积分10
26秒前
汉堡包应助Scarlett采纳,获得10
26秒前
研友_VZG7GZ应助cookie11111采纳,获得30
26秒前
科研通AI5应助rabwang采纳,获得10
27秒前
看不懂文献的进士完成签到,获得积分10
27秒前
27秒前
zho应助无情的小鸽子采纳,获得10
28秒前
无私的朝雪完成签到 ,获得积分10
28秒前
轩贝发布了新的文献求助20
28秒前
科研通AI5应助hhhhxxxx采纳,获得10
28秒前
爆米花应助Aurora.H采纳,获得30
29秒前
30秒前
潇洒哥爱吃橘完成签到,获得积分20
30秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 450
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3710956
求助须知:如何正确求助?哪些是违规求助? 3259723
关于积分的说明 9910137
捐赠科研通 2972852
什么是DOI,文献DOI怎么找? 1630153
邀请新用户注册赠送积分活动 773205
科研通“疑难数据库(出版商)”最低求助积分说明 744225