Real-time semantic segmentation for underground mine tunnel

计算机科学 分割 人工智能 实时计算
作者
Jiawen Wang,Dewei Li,Qiong Long,Zhongqi Zhao,Xuan Gao,Jingchuan Chen,Kehu Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108269-108269 被引量:1
标识
DOI:10.1016/j.engappai.2024.108269
摘要

Semantic segmentation is the underlying technology for many intelligent applications in underground mines. Unlike the ordinary scenario, the lighting of underground mines varies drastically, and there is heavy dust and mist, which results in poor image quality and greatly hinders the application of image semantic segmentation in underground mines. Because there is currently no datasets for underground mine tunnels available, a dataset named Underground Mine Tunnel Semantic Segmentation Dataset (UMTSSD) have to be constructed to support our research. UMTSSD consists of 3461 meticulously annotated images and 17 annotated categories. A real-time semantic segmentation algorithm named Fast Adaptive Deep Dual-resolution Network (FA-DDRNet) which uses Deep Dual-resolution Network (DDRNet) as the backbone is proposed for underground mines. To enhance the semantic segmentation accuracy in underground environment, FA-DDRNet introduces two modules: Fast Adaptive Input Normalization Module (FAINM) and Scale-wise Residual Cascade Module (SRCM). FAINM can autonomously and quickly adjust normal lighting images, weak lighting images, and overexposed images to improve the robustness of semantic segmentation algorithms. SRCM is integrated into the backbone to swiftly fuse multi-scale features in a cascade fashion, resulting in enhanced detection of objects with diverse shapes in underground environment. Finally, our method achieves exceptional performance with a superior inference speed compared to other semantic segmentation algorithms in UMTSSD. The method can realize running in real-time on low computational power embedded devices, which is well adapted to underground environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuxiaopeng发布了新的文献求助10
刚刚
搜集达人应助何宸汐采纳,获得10
刚刚
爱撒娇的孤丹完成签到 ,获得积分10
1秒前
愉快彩虹发布了新的文献求助10
2秒前
2秒前
SungManhin应助结实的山菡采纳,获得30
2秒前
三土发布了新的文献求助10
5秒前
orixero应助精明的火车采纳,获得10
5秒前
7秒前
7秒前
7秒前
7秒前
可爱的函函应助半柚采纳,获得10
7秒前
有魅力的香芦完成签到,获得积分10
8秒前
9秒前
汉堡包应助zxy采纳,获得10
9秒前
卓越发布了新的文献求助10
10秒前
小白白完成签到 ,获得积分10
10秒前
fuxiaopeng完成签到,获得积分20
11秒前
思源应助yingzi采纳,获得10
11秒前
12秒前
Owen应助CATH采纳,获得10
13秒前
13秒前
zcg发布了新的文献求助10
13秒前
柠檬01210发布了新的文献求助10
15秒前
化学发布了新的文献求助10
15秒前
精明的火车完成签到,获得积分20
15秒前
开心的眼睛完成签到,获得积分10
16秒前
李健的小迷弟应助dllz采纳,获得10
16秒前
16秒前
思源应助拼搏语兰采纳,获得10
17秒前
17秒前
炙热的若枫完成签到 ,获得积分10
17秒前
18秒前
xiao完成签到,获得积分10
18秒前
情怀应助化学采纳,获得10
18秒前
honeylaker完成签到,获得积分10
19秒前
orange发布了新的文献求助10
19秒前
科研通AI5应助xuanhui采纳,获得10
19秒前
Thien应助圆圆的波仔采纳,获得30
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475