Hierarchical FFT-LSTM-GCN based model for nuclear power plant fault diagnosis considering spatio-temporal features fusion

计算机科学 融合 断层(地质) 快速傅里叶变换 核电站 人工智能 模式识别(心理学) 算法 核物理学 物理 地质学 地震学 哲学 语言学
作者
Yushun Wang,Jingquan Liu,Gensheng Qian
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:171: 105178-105178 被引量:22
标识
DOI:10.1016/j.pnucene.2024.105178
摘要

As safety-critical infrastructure, nuclear power plants (NPPs) require enhanced safety measures and risk minimization. To achieve this goal and to aid operator decision-making while reducing human error, various fault diagnosis (FD) methods have been proposed. Among these, deep learning-based approaches have demonstrated significant success in FD because of their ability to effectively extract information about machine degradation. However, most existing methods primarily focus on temporal features while neglecting spatial features. To leverage both temporal and spatial features effectively and achieve high diagnostic accuracy, we propose a hierarchical deep learning based model that comprises the fast Fourier transform (FFT), long short-term memory networks (LSTM) and graph convolutional networks (GCN). The application of FFT to sensor sequences effectively mitigates their volatility. The use of GCN enables automated extraction of intricate spatial features from multi-sensor data, while LSTM is adept at directly extracting temporal features from historical input data. To validate the proposed model, we conducted three experiments using data simulated by the personal computer transient analyzer (PCTRAN), and the results demonstrate that the diagnostic accuracy of the proposed hierarchical FFT-LSTM-GCN model surpasses that of any single model for NPP FD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAngelica完成签到,获得积分10
1秒前
2秒前
2秒前
hyq375发布了新的文献求助10
2秒前
清爽博超发布了新的文献求助10
3秒前
4秒前
4秒前
千千完成签到,获得积分10
5秒前
小二郎应助Irene采纳,获得10
5秒前
6秒前
在水一方应助独特小凡采纳,获得10
6秒前
6秒前
小申发布了新的文献求助10
6秒前
6秒前
科研通AI6应助zzznznnn采纳,获得10
7秒前
8秒前
AllOfMe发布了新的文献求助10
8秒前
libai发布了新的文献求助10
8秒前
香蕉觅云应助梓棋采纳,获得10
8秒前
英俊的菲鹰完成签到,获得积分10
9秒前
10秒前
10秒前
小冰发布了新的文献求助10
10秒前
Y714完成签到 ,获得积分10
10秒前
Ehgnix完成签到,获得积分10
10秒前
11秒前
米欧发布了新的文献求助10
12秒前
zhugepengju发布了新的文献求助10
12秒前
科研通AI2S应助霸气的念云采纳,获得10
13秒前
13秒前
14秒前
123554完成签到 ,获得积分10
14秒前
车骋昊发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
feike发布了新的文献求助10
15秒前
广场关注了科研通微信公众号
15秒前
avalanche应助嗅犬采纳,获得30
17秒前
bommi发布了新的文献求助10
18秒前
施旭佳完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434422
求助须知:如何正确求助?哪些是违规求助? 4546707
关于积分的说明 14203943
捐赠科研通 4466693
什么是DOI,文献DOI怎么找? 2448283
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969