Dynamic Event-Triggered Control for a Class of Uncertain Strict-Feedback Systems via an Improved Adaptive Neural Networks Backstepping Approach

反推 班级(哲学) 控制理论(社会学) 计算机科学 人工神经网络 自适应控制 控制系统 控制(管理) 输出反馈 控制工程 自适应系统 人工智能 工程类 电气工程
作者
Ning Xu,Xiang Liu,Yulin Li,Guangdeng Zong,Xudong Zhao,Huanqing Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:39
标识
DOI:10.1109/tase.2024.3374522
摘要

This article focuses on a dynamic event-triggered adaptive neural networks backstepping control for a class of uncertain strict-feedback systems with communication constraints. The uncertain terms including external disturbances and unknown nonlinear functions are approximated by radial basis function neural networks, in which the weight update laws are obtained via the gradient descent algorithm, ensuring the local boundedness of the approximation error of neural networks. Then, to enhance the transmission efficiency of control signals, a dynamic event-triggered mechanism is introduced, which enables the dynamic adjustment of threshold parameters in response to the actual tracking performance. It is strictly proved via the Lyapunov stability criterion that the tracking error can converge to a desired small neighborhood of the origin, and all signals in the closed-loop system are bounded. Finally, the validity of the control strategy is demonstrated through a simulation example. Note to Practitioners — In practical network control systems, control signals are typically transmitted continuously or periodically to devices through the communication network in the form of data packets. As communication networks are usually shared by various system nodes, and resources such as communication channel bandwidth and computational capabilities are limited, improving the transmission efficiency of control signals becomes a crucial design problem for controllers in network control systems. Therefore, This study introduces a control method via event-triggered sampling, aiming to enhance sampling efficiency while ensuring the stability and reliability of the system. The proposed control method is suitable for a broad category of strict-feedback nonlinear systems with communication constraints, offering notable advantages such as low-complexity design and straightforward implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾忆完成签到,获得积分10
1秒前
通~发布了新的文献求助10
1秒前
研友_8WzJOZ完成签到,获得积分10
2秒前
2秒前
JX完成签到,获得积分10
3秒前
共享精神应助剑酒采纳,获得10
3秒前
胡说八完成签到,获得积分10
6秒前
7秒前
酷波er应助zzz采纳,获得10
7秒前
7秒前
8秒前
斯文败类应助Linyi采纳,获得10
8秒前
斯文败类应助邹小天采纳,获得10
8秒前
9秒前
炙心发布了新的文献求助30
10秒前
zz驳回了Lvhao应助
13秒前
13秒前
14秒前
滴滴滴发布了新的文献求助10
15秒前
优雅莞完成签到,获得积分10
15秒前
Orange应助馒头采纳,获得10
15秒前
15秒前
16秒前
所所应助zzzzzxh采纳,获得10
16秒前
LTDs完成签到,获得积分10
18秒前
天天快乐应助就好采纳,获得10
18秒前
AOPs完成签到,获得积分10
18秒前
Gauss应助饭团和阿毛采纳,获得100
19秒前
今夜不设防完成签到,获得积分10
20秒前
Linyi发布了新的文献求助10
20秒前
阳光完成签到,获得积分10
21秒前
23秒前
鲁新连发布了新的文献求助10
23秒前
陈军应助xuuuuu采纳,获得20
23秒前
丹丹完成签到,获得积分10
24秒前
SciGPT应助碳酸芙兰采纳,获得10
25秒前
北方有嘉任完成签到,获得积分10
25秒前
潇潇完成签到,获得积分10
26秒前
滴滴滴完成签到,获得积分20
26秒前
zzz发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905