Comprehensive risk assessment of typhoon disasters in China's coastal areas based on multi-source geographic big data

台风 中国 危害 风险评估 地理 脆弱性(计算) 环境资源管理 环境科学 地理信息系统 自然地理学 环境保护 地图学 气象学 计算机科学 考古 有机化学 化学 计算机安全
作者
Zhenkang Wang,Nan Xia,Xin Zhao,Xiaolei JI,Jiechen Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171815-171815 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.171815
摘要

Typhoons can bring substantial casualties and economic ramifications, and effective prevention strategies necessitate a comprehensive risk assessment. Nevertheless, existing studies on its comprehensive risk assessment are characterized by coarse spatial scales, limited incorporation of geographic big data, and rarely considering disaster mitigation capacity. To address these problems, this study combined multi-source geographic big data to develop the Comprehensive Risk Assessment Model (CRAM). The model constructed 17 indicators from 4 categories of factors, including exposure, vulnerability, hazard, and mitigation capacity. A subjective-objective combination weighting method was introduced to generate the indicator weights, and comprehensive risk index of typhoon disasters was calculated for 987 counties along China's coastal regions. Results revealed a pronounced spatial heterogeneity of the comprehensive typhoon risk, which exhibited an overarching decreasing trend from the southeast coastal areas toward the northwest inland territories. 61.7 % of counties exhibited a medium-to-high level of comprehensive risk, and counties with very-high risks are predominantly concentrated in the Shandong Peninsula, Yangtze River Delta, Hokkien Golden Triangle, Greater Bay Area, Leizhou Peninsula, and Hainan Province, mainly due to high exposure and hazard factors. The correlation coefficient between the risk assessment results and typhoon-induced direct economic losses reached 0.702, indicating the effectiveness and reliability of the CRAM. Meanwhile, indicators from intrinsic attributes of typhoons and geographic big data had pronounced importance, and regional mitigation capacity should be improved. Our proposed method can help to scientifically understand spatial patterns of comprehensive risk and mitigate the effects of typhoon disasters in China's coastal regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bran应助冰阔落采纳,获得20
刚刚
火星上曼冬完成签到,获得积分10
1秒前
1秒前
snow完成签到,获得积分10
1秒前
苏曼青发布了新的文献求助10
3秒前
英俊的铭应助All采纳,获得10
3秒前
lingw完成签到,获得积分10
3秒前
yoowt完成签到,获得积分10
4秒前
明理思真发布了新的文献求助10
5秒前
慕斯完成签到,获得积分10
5秒前
091完成签到 ,获得积分10
5秒前
el发布了新的文献求助10
6秒前
赘婿应助米娅采纳,获得20
6秒前
大个应助linda采纳,获得10
6秒前
小橘完成签到,获得积分10
7秒前
kiki完成签到,获得积分10
7秒前
7秒前
aich完成签到,获得积分10
7秒前
7秒前
moroa完成签到,获得积分10
8秒前
我是老大应助aiyowei采纳,获得10
8秒前
lingw发布了新的文献求助10
8秒前
舒适的亦瑶完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
风中元风完成签到,获得积分10
10秒前
完美世界应助哈哈哈采纳,获得30
11秒前
艾比西地完成签到 ,获得积分10
11秒前
ossantu发布了新的文献求助10
11秒前
易波折完成签到,获得积分20
12秒前
听话的白易完成签到,获得积分20
13秒前
13秒前
13秒前
答案是Cyndi完成签到,获得积分10
14秒前
Grace159完成签到 ,获得积分10
14秒前
周mm完成签到,获得积分10
14秒前
李健应助小奶球采纳,获得10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012