Advancing sweetpotato quality assessment with hyperspectral imaging and explainable artificial intelligence

高光谱成像 人工智能 质量(理念) 质量评定 遥感 环境科学 计算机科学 农业工程 工程类 地理 可靠性工程 评价方法 认识论 哲学
作者
Md Toukir Ahmed,Nuwan K. Wijewardane,Yutong Lu,Daniela Jones,Michael W. Kudenov,Cranos M. Williams,Arthur Villordon,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:220: 108855-108855 被引量:2
标识
DOI:10.1016/j.compag.2024.108855
摘要

The quality evaluation of sweetpotatoes is of utmost importance during postharvest handling as it significantly impacts consumer satisfaction, nutritional value, and market competitiveness. This study presents an innovative approach that integrates explainable artificial intelligence (AI) with hyperspectral imaging to enhance the assessment of three important quality attributes in sweetpotatoes, i.e., dry matter content, soluble solid content, and firmness. Sweetpotato samples of three different varieties, including "Bayou Belle", "Murasaki", and "Orleans", were imaged using a portable visible near-infrared hyperspectral imaging (VNIR-HSI) camera, with a 400–1000 nm spectral range. The extracted spectral data were used to select key wavelengths, develop multivariate regression models, and utilize SHapley Additive exPlanations (SHAP) values to ascertain model effectiveness and interpretability. The regression models (dry matter: R2p = 0.92, RMSEP = 1.50 % and RPD = 5.58; soluble solid content: R2p = 0.66, RMSEP = 0.85obrix, and RPD = 1.72; firmness: R2p = 0.85; RMSEP = 1.66 N and RPD = 2.63) developed with key wavelengths were used to generate prediction maps to visualize the spatial distribution of response attributes, facilitating an improved evaluation of sweetpotato quality. The study demonstrated that the combination of HSI, variable selection, and explainable AI has the potential to enhance the quality assessment of sweetpotatoes, ensuring supplies of higher quality products to consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
迹K完成签到,获得积分10
3秒前
风趣海吃饭侠完成签到 ,获得积分10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
张北海应助科研通管家采纳,获得10
6秒前
坦率的匪应助科研通管家采纳,获得10
6秒前
思思发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
坦率的匪应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
疯狂的冬瓜完成签到,获得积分10
9秒前
ding应助波波采纳,获得10
9秒前
11秒前
研友_LX66qZ完成签到,获得积分10
12秒前
至幸完成签到,获得积分10
15秒前
么大人发布了新的文献求助10
15秒前
你好呀嘻嘻完成签到 ,获得积分10
15秒前
16秒前
至幸发布了新的文献求助10
18秒前
三颗星南极三完成签到 ,获得积分10
21秒前
华仔应助鲨鱼辣椒793采纳,获得10
25秒前
万能图书馆应助dej采纳,获得10
27秒前
汉堡包应助zombie采纳,获得10
29秒前
LYB1a吕完成签到,获得积分10
32秒前
天涯飞虎完成签到 ,获得积分10
32秒前
卷毛完成签到,获得积分10
32秒前
紧张的如南完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975