Advancing sweetpotato quality assessment with hyperspectral imaging and explainable artificial intelligence

高光谱成像 人工智能 质量(理念) 质量评定 遥感 环境科学 计算机科学 农业工程 工程类 地理 可靠性工程 评价方法 哲学 认识论
作者
Md Toukir Ahmed,Nuwan K. Wijewardane,Yutong Lu,Daniela Jones,Michael W. Kudenov,Cranos M. Williams,Arthur Villordon,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108855-108855 被引量:2
标识
DOI:10.1016/j.compag.2024.108855
摘要

The quality evaluation of sweetpotatoes is of utmost importance during postharvest handling as it significantly impacts consumer satisfaction, nutritional value, and market competitiveness. This study presents an innovative approach that integrates explainable artificial intelligence (AI) with hyperspectral imaging to enhance the assessment of three important quality attributes in sweetpotatoes, i.e., dry matter content, soluble solid content, and firmness. Sweetpotato samples of three different varieties, including "Bayou Belle", "Murasaki", and "Orleans", were imaged using a portable visible near-infrared hyperspectral imaging (VNIR-HSI) camera, with a 400–1000 nm spectral range. The extracted spectral data were used to select key wavelengths, develop multivariate regression models, and utilize SHapley Additive exPlanations (SHAP) values to ascertain model effectiveness and interpretability. The regression models (dry matter: R2p = 0.92, RMSEP = 1.50 % and RPD = 5.58; soluble solid content: R2p = 0.66, RMSEP = 0.85obrix, and RPD = 1.72; firmness: R2p = 0.85; RMSEP = 1.66 N and RPD = 2.63) developed with key wavelengths were used to generate prediction maps to visualize the spatial distribution of response attributes, facilitating an improved evaluation of sweetpotato quality. The study demonstrated that the combination of HSI, variable selection, and explainable AI has the potential to enhance the quality assessment of sweetpotatoes, ensuring supplies of higher quality products to consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
打打应助无限的乌冬面采纳,获得10
1秒前
surgeon10完成签到,获得积分10
1秒前
完美世界应助小children丙采纳,获得30
2秒前
3秒前
3秒前
小盼盼盼发布了新的文献求助10
4秒前
77应助萧水白采纳,获得100
5秒前
斯文败类应助臭宝大迷弟采纳,获得10
5秒前
阿湫发布了新的文献求助10
5秒前
5秒前
嗷嗷关注了科研通微信公众号
6秒前
沈sm发布了新的文献求助10
7秒前
羊毛毛衣完成签到,获得积分10
7秒前
davidhu完成签到,获得积分10
8秒前
矮小的万声完成签到 ,获得积分10
8秒前
570完成签到,获得积分20
9秒前
咿呀咿呀哟发布了新的文献求助200
9秒前
10秒前
粥喝不喝发布了新的文献求助10
10秒前
很多奶油完成签到 ,获得积分10
11秒前
抗体小王完成签到,获得积分10
12秒前
12秒前
科目三应助Cc采纳,获得10
13秒前
搜集达人应助研友_nV2pkn采纳,获得10
14秒前
jisnoalia发布了新的文献求助10
15秒前
万能图书馆应助雨醉东风采纳,获得10
18秒前
山橘月完成签到,获得积分20
19秒前
20秒前
粥喝不喝发布了新的文献求助10
24秒前
二二完成签到 ,获得积分10
25秒前
李爱国应助张朵拉采纳,获得10
25秒前
奋斗的小甜瓜完成签到,获得积分20
26秒前
Hello应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得20
26秒前
Migue应助科研通管家采纳,获得10
26秒前
8R60d8应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587