Advancing sweetpotato quality assessment with hyperspectral imaging and explainable artificial intelligence

高光谱成像 人工智能 质量(理念) 质量评定 遥感 环境科学 计算机科学 农业工程 工程类 地理 可靠性工程 评价方法 哲学 认识论
作者
Md Toukir Ahmed,Nuwan K. Wijewardane,Yutong Lu,Daniela Jones,Michael W. Kudenov,Cranos M. Williams,Arthur Villordon,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108855-108855 被引量:2
标识
DOI:10.1016/j.compag.2024.108855
摘要

The quality evaluation of sweetpotatoes is of utmost importance during postharvest handling as it significantly impacts consumer satisfaction, nutritional value, and market competitiveness. This study presents an innovative approach that integrates explainable artificial intelligence (AI) with hyperspectral imaging to enhance the assessment of three important quality attributes in sweetpotatoes, i.e., dry matter content, soluble solid content, and firmness. Sweetpotato samples of three different varieties, including "Bayou Belle", "Murasaki", and "Orleans", were imaged using a portable visible near-infrared hyperspectral imaging (VNIR-HSI) camera, with a 400–1000 nm spectral range. The extracted spectral data were used to select key wavelengths, develop multivariate regression models, and utilize SHapley Additive exPlanations (SHAP) values to ascertain model effectiveness and interpretability. The regression models (dry matter: R2p = 0.92, RMSEP = 1.50 % and RPD = 5.58; soluble solid content: R2p = 0.66, RMSEP = 0.85obrix, and RPD = 1.72; firmness: R2p = 0.85; RMSEP = 1.66 N and RPD = 2.63) developed with key wavelengths were used to generate prediction maps to visualize the spatial distribution of response attributes, facilitating an improved evaluation of sweetpotato quality. The study demonstrated that the combination of HSI, variable selection, and explainable AI has the potential to enhance the quality assessment of sweetpotatoes, ensuring supplies of higher quality products to consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助bdvdsrwteges采纳,获得10
2秒前
木木雨发布了新的文献求助10
3秒前
鬲木发布了新的文献求助10
3秒前
mao12wang发布了新的文献求助10
3秒前
L坨坨完成签到 ,获得积分10
3秒前
耿强发布了新的文献求助10
3秒前
jmy发布了新的文献求助10
4秒前
科研小黑子完成签到,获得积分20
4秒前
4秒前
苏尔完成签到,获得积分10
4秒前
4秒前
浅墨完成签到 ,获得积分10
4秒前
mony完成签到,获得积分10
4秒前
5秒前
5秒前
huizi发布了新的文献求助10
5秒前
6秒前
菠萝冰棒发布了新的文献求助10
6秒前
6秒前
请叫我风吹麦浪完成签到,获得积分0
6秒前
清爽雪枫发布了新的文献求助10
7秒前
7秒前
7秒前
李健应助斜杠武采纳,获得10
8秒前
fengxj完成签到 ,获得积分10
8秒前
8秒前
8秒前
七七给七七的求助进行了留言
8秒前
9秒前
9秒前
Hello应助冷静的平安采纳,获得10
9秒前
FKVB_完成签到 ,获得积分10
10秒前
饼饼完成签到,获得积分10
10秒前
天天快乐应助木木采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
大气飞丹发布了新的文献求助10
10秒前
丫丫完成签到,获得积分10
11秒前
科研通AI2S应助觅桃乌龙采纳,获得10
11秒前
耿强完成签到,获得积分10
11秒前
wanci应助dd采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759