Advancing sweetpotato quality assessment with hyperspectral imaging and explainable artificial intelligence

高光谱成像 VNIR公司 可解释性 人工智能 计算机科学 数学
作者
Md. Toukir Ahmed,Nuwan K. Wijewardane,Yuzhen Lu,Daniela Jones,Michael W. Kudenov,Cranos Williams,Arthur Villordon,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108855-108855 被引量:47
标识
DOI:10.1016/j.compag.2024.108855
摘要

The quality evaluation of sweetpotatoes is of utmost importance during postharvest handling as it significantly impacts consumer satisfaction, nutritional value, and market competitiveness. This study presents an innovative approach that integrates explainable artificial intelligence (AI) with hyperspectral imaging to enhance the assessment of three important quality attributes in sweetpotatoes, i.e., dry matter content, soluble solid content, and firmness. Sweetpotato samples of three different varieties, including "Bayou Belle", "Murasaki", and "Orleans", were imaged using a portable visible near-infrared hyperspectral imaging (VNIR-HSI) camera, with a 400–1000 nm spectral range. The extracted spectral data were used to select key wavelengths, develop multivariate regression models, and utilize SHapley Additive exPlanations (SHAP) values to ascertain model effectiveness and interpretability. The regression models (dry matter: R2p = 0.92, RMSEP = 1.50 % and RPD = 5.58; soluble solid content: R2p = 0.66, RMSEP = 0.85obrix, and RPD = 1.72; firmness: R2p = 0.85; RMSEP = 1.66 N and RPD = 2.63) developed with key wavelengths were used to generate prediction maps to visualize the spatial distribution of response attributes, facilitating an improved evaluation of sweetpotato quality. The study demonstrated that the combination of HSI, variable selection, and explainable AI has the potential to enhance the quality assessment of sweetpotatoes, ensuring supplies of higher quality products to consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaa发布了新的文献求助10
1秒前
2秒前
2秒前
cwy完成签到,获得积分10
2秒前
wqwqwq完成签到,获得积分10
3秒前
Hello应助glacial采纳,获得10
4秒前
calico发布了新的文献求助10
4秒前
杨慧发布了新的文献求助10
4秒前
务实的河马完成签到,获得积分10
5秒前
Lucas应助文艺晓亦采纳,获得10
7秒前
7秒前
chen完成签到 ,获得积分10
7秒前
zbr完成签到 ,获得积分10
8秒前
9秒前
小蘑菇应助不许焦绿o采纳,获得10
9秒前
丘比特应助笑点低歌曲采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
10秒前
訫藍完成签到,获得积分10
10秒前
唐亿倩完成签到,获得积分10
10秒前
大模型应助fddd采纳,获得10
10秒前
.....完成签到,获得积分20
11秒前
王顺顺发布了新的文献求助10
11秒前
HRL完成签到,获得积分10
12秒前
13秒前
杨慧完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
Wu完成签到 ,获得积分10
15秒前
15秒前
桐桐应助张超超采纳,获得10
15秒前
杀出个黎明举报求助违规成功
15秒前
镓氧锌钇铀举报求助违规成功
15秒前
加菲丰丰举报求助违规成功
15秒前
15秒前
16秒前
小姚姚完成签到,获得积分10
17秒前
Hello应助.....采纳,获得10
17秒前
東南風完成签到,获得积分10
17秒前
Owen应助剑来采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268