Online task offloading algorithm based on multi-objective optimization caching strategy

计算机科学 任务(项目管理) 马尔可夫决策过程 隐藏物 最优化问题 遗传算法 在线算法 移动边缘计算 服务器 分布式计算 算法 计算机网络 马尔可夫过程 机器学习 经济 管理 统计 数学
作者
Mande Xie,Xiangquan Su,Hao Sun,Guoping Zhang
出处
期刊:Computer Networks [Elsevier BV]
卷期号:245: 110400-110400 被引量:6
标识
DOI:10.1016/j.comnet.2024.110400
摘要

Within the realm of Mobile Edge Computing (MEC), task offloading has consistently garnered significant attention. Within the context of intricate caching environments and multi-user scenarios, conventional solutions frequently encounter difficulties in simultaneously fulfilling the demands for latency reduction and energy consumption optimization. This paper presents a novel online task offloading algorithm that leverages a multi-objective optimization caching strategy. This algorithm addresses two challenges: the Online Task Offloading (OTO) problem and the Online Task File Caching (OTFC) problem. The OTO problem is conceptualized as a multi-user game, where Nash equilibrium is employed to effectively characterize and address it. This ensures the determination of the optimal offloading strategy in the presence of various caching scenarios. Meanwhile, the OTFC problem is transformed into a Markov decision process, and through the utilization of Deep Q-Networks, we can forecast the requirements of online tasks and subsequently determine the optimal caching vector. The incorporation of the Multi-Objective Cache Policy (MOCP) algorithm precedes the finalization of the caching vector. Rooted in multi-objective optimization, this algorithm adeptly balances various caching decisions, achieving a Pareto optimal outcome. The proposed offloading model that effectively caters to the requirements of task offloading while incorporating the demands of task file caching. Moreover, the MOCP algorithm ensures optimal caching decisions across a broad range of scenarios. Simulation tests reveal that this enhanced offloading algorithm, grounded in multi-objective optimization, outperforms traditional methods in energy conservation, boasting energy savings of up to 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AGuang应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得30
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
MchemG应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
萧水白应助科研通管家采纳,获得10
刚刚
云城发布了新的文献求助20
刚刚
yar应助科研通管家采纳,获得10
刚刚
刚刚
将将将应助bofu采纳,获得10
刚刚
刚刚
三又一十八完成签到,获得积分10
刚刚
苇一完成签到,获得积分10
1秒前
shain完成签到,获得积分10
1秒前
dazhong发布了新的文献求助10
2秒前
NIDADI发布了新的文献求助10
2秒前
yangzai发布了新的文献求助10
2秒前
qwa完成签到 ,获得积分20
2秒前
香蕉觅云应助温柔的化蛹采纳,获得10
2秒前
3秒前
3秒前
卢莹发布了新的文献求助10
4秒前
CipherSage应助暖暖采纳,获得10
4秒前
研友_VZG7GZ应助鱼儿会飞采纳,获得10
4秒前
NIDADI完成签到,获得积分10
6秒前
yuM完成签到,获得积分10
6秒前
Almo完成签到,获得积分10
7秒前
princesun083完成签到,获得积分10
8秒前
小曾发布了新的文献求助10
8秒前
courage发布了新的文献求助10
8秒前
9秒前
上官若男应助bofu采纳,获得10
9秒前
9秒前
温柔的化蛹完成签到,获得积分20
10秒前
10秒前
北彧发布了新的文献求助10
10秒前
liuyc完成签到 ,获得积分10
11秒前
调皮时光完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961131
求助须知:如何正确求助?哪些是违规求助? 3507413
关于积分的说明 11135967
捐赠科研通 3239888
什么是DOI,文献DOI怎么找? 1790452
邀请新用户注册赠送积分活动 872420
科研通“疑难数据库(出版商)”最低求助积分说明 803152