Construction of S-scheme cyano-modified g-C3N4/TiO2 film with boosted charge transfer and highly hydrophilic surface for enhanced photocatalytic degradation of norfloxacin

异质结 光催化 降级(电信) 诺氟沙星 化学工程 密度泛函理论 化学 载流子 材料科学 光化学 光电子学 有机化学 计算机科学 催化作用 计算化学 电信 生物化学 工程类 抗生素 环丙沙星
作者
Wei Gan,Ruixin Chen,Zhang Li,Jun Guo,Miao Zhang,Yuqing Lu,Zhaoqi Sun,Xucheng Fu
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:206: 74-87 被引量:12
标识
DOI:10.1016/j.jmst.2024.03.039
摘要

Developing highly efficient and recyclable photocatalysts has been regarded as an attractive strategy to solve antibiotic contaminants. Herein, we designed and fabricated Cy-C3N4/TiO2 S-scheme heterojunction film with boosted charge transfer and a highly hydrophilic surface. The as-prepared heterojunction exhibited outstanding removal efficiency on tetracyclines and fluoroquinolone antibiotics (more than 80% within 90 min). The removal rate of 300-Cy-C3N4/TiO2 on norfloxacin (NOR) was 2.12, and 1.59 times higher than that of pristine TiO2, C3N4/TiO2, respectively. The excellent photocatalytic performance of 300-Cy-C3N4/TiO2 was attributed to the highly hydrophilic surface and effective transfer and separation of carriers. Moreover, the NOR degradation pathways were proposed based on the results of density functional theory (DFT), and liquid chromatography-mass spectrometry. The toxicity assessment indicated the toxicity of intermediates can be remarkably alleviated. The DFT calculation and selective photo-deposition experiment demonstrated that an internal electric field was formed at the heterojunction interface, and the charge carriers migrated between Cy-C3N4 and TiO2 following an S-scheme transfer pathway. This research not only provides a promising method for tracking charge distribution on thin-film heterojunction photocatalysts but also helps us to design high-efficiency, and recyclable heterojunctions to solve antibiotic contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助Dd18753801528采纳,获得10
1秒前
风轻青柠完成签到,获得积分10
2秒前
材料生发布了新的文献求助10
2秒前
my发布了新的文献求助10
3秒前
哆啦B梦完成签到,获得积分10
3秒前
3秒前
gusgusgus发布了新的文献求助10
3秒前
4秒前
追风少年发布了新的文献求助10
4秒前
4秒前
蔚蓝发布了新的文献求助10
5秒前
艺玲发布了新的文献求助10
7秒前
正常发布了新的文献求助10
7秒前
多多肉完成签到,获得积分10
7秒前
有点儿微胖完成签到,获得积分10
8秒前
豆4799完成签到,获得积分10
10秒前
ruby关注了科研通微信公众号
11秒前
JUGG发布了新的文献求助10
11秒前
牛马鹅完成签到,获得积分20
11秒前
gusgusgus完成签到,获得积分10
13秒前
Zy发布了新的文献求助10
14秒前
15秒前
15秒前
一平方米的大草原完成签到 ,获得积分10
16秒前
QINXIAOTONG完成签到,获得积分10
17秒前
Owen应助12123浪采纳,获得10
17秒前
lele完成签到,获得积分10
18秒前
我是老大应助大海捞针2025采纳,获得10
19秒前
华仔应助沉静弘文采纳,获得10
19秒前
19秒前
20秒前
李健应助tanfor采纳,获得10
20秒前
英俊的铭应助直率的雪巧采纳,获得10
21秒前
23秒前
啦啦啦完成签到 ,获得积分10
23秒前
lionel发布了新的文献求助10
24秒前
25秒前
渴望者发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164