亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perturbation-Specific Transcriptional Mapping for unbiased target elucidation of antibiotics

计算生物学 抗生素 摄动(天文学) 生物 遗传学 物理 天文
作者
Keith P. Romano,Josephine Shaw Bagnall,Thulasi Warrier,Jaryd Sullivan,Kristina Ferrara,Marek Orzechowski,Phuong Nguyen,Kyra Raines,Jonathan Livny,Noam Shoresh,Deborah T. Hung
标识
DOI:10.1101/2024.04.25.590978
摘要

Abstract The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the post-genomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called Perturbation-Specific Transcriptional Mapping (PerSpecTM), in which large-throughput expression profiling of wildtype or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three new molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small molecule inhibition resemble those resulting from genetic depletion of essential targets by CRISPRi by PerSpecTM, demonstrating proof-of-concept that correlations between expression profiles of small molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts. Significance Statement New antibiotics are critically needed in the face of increasing antibiotic resistance. However, mechanism-of-action (MOA) elucidation remains challenging and imposes a major bottleneck in antibiotic discovery and development. Building on the principle that molecules with similar MOAs elicit similar transcriptional responses, we have developed a highly scalable strategy for MOA prediction in the important bacterial pathogen Pseudomonas aeruginosa based on correlations between the expression profiles of new molecules and known perturbations, either small molecule inhibition by known antibiotics or transcriptional repression of essential targets by CRISPRi. By rapidly assigning MOAs to three new molecules with anti-pseudomonal activity, we provide proof-of-concept for a rapid, comprehensive, systematic, reference-based approach to MOA prediction with the potential to transform antibiotic discovery efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得80
11秒前
Hayat应助科研通管家采纳,获得500
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
可爱航发布了新的文献求助20
17秒前
壮观黑裤完成签到 ,获得积分10
19秒前
星辰大海应助mjf111采纳,获得10
23秒前
lanxinyue应助JOYJOYJOJO采纳,获得10
26秒前
小橙同学完成签到 ,获得积分10
37秒前
40秒前
高强发布了新的文献求助10
47秒前
47秒前
morena发布了新的文献求助10
48秒前
Ava应助傻傻的修洁采纳,获得10
1分钟前
spark810应助啊黑虎爸爸采纳,获得30
1分钟前
1分钟前
shula发布了新的文献求助10
1分钟前
清脆大米发布了新的文献求助10
1分钟前
coco发布了新的文献求助10
1分钟前
大钱哥完成签到,获得积分10
1分钟前
1分钟前
任性怜阳发布了新的文献求助10
1分钟前
Aniya_Shine完成签到 ,获得积分10
1分钟前
SciGPT应助傻傻的修洁采纳,获得10
1分钟前
mjf111发布了新的文献求助10
1分钟前
1分钟前
lxl发布了新的文献求助10
1分钟前
mjf111完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LeuinPonsgi发布了新的文献求助30
1分钟前
勤恳幻然发布了新的文献求助10
2分钟前
脑洞疼应助含蓄戾采纳,获得10
2分钟前
2分钟前
春风发布了新的文献求助10
2分钟前
科研通AI2S应助Jalason采纳,获得10
2分钟前
Hello应助勤恳幻然采纳,获得10
2分钟前
李欣宇发布了新的文献求助10
2分钟前
2分钟前
lxl完成签到,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801865
关于积分的说明 7845847
捐赠科研通 2459209
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628651
版权声明 601727