Perturbation-Specific Transcriptional Mapping for unbiased target elucidation of antibiotics

计算生物学 抗生素 摄动(天文学) 生物 遗传学 物理 天文
作者
Keith P. Romano,Josephine Shaw Bagnall,Thulasi Warrier,Jaryd Sullivan,Kristina Ferrara,Marek Orzechowski,Phuong Nguyen,Kyra Raines,Jonathan Livny,Noam Shoresh,Deborah T. Hung
标识
DOI:10.1101/2024.04.25.590978
摘要

Abstract The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the post-genomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called Perturbation-Specific Transcriptional Mapping (PerSpecTM), in which large-throughput expression profiling of wildtype or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three new molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small molecule inhibition resemble those resulting from genetic depletion of essential targets by CRISPRi by PerSpecTM, demonstrating proof-of-concept that correlations between expression profiles of small molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts. Significance Statement New antibiotics are critically needed in the face of increasing antibiotic resistance. However, mechanism-of-action (MOA) elucidation remains challenging and imposes a major bottleneck in antibiotic discovery and development. Building on the principle that molecules with similar MOAs elicit similar transcriptional responses, we have developed a highly scalable strategy for MOA prediction in the important bacterial pathogen Pseudomonas aeruginosa based on correlations between the expression profiles of new molecules and known perturbations, either small molecule inhibition by known antibiotics or transcriptional repression of essential targets by CRISPRi. By rapidly assigning MOAs to three new molecules with anti-pseudomonal activity, we provide proof-of-concept for a rapid, comprehensive, systematic, reference-based approach to MOA prediction with the potential to transform antibiotic discovery efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
ju龙哥发布了新的文献求助10
1秒前
烟花应助LUO_Roong采纳,获得10
2秒前
2秒前
Gideon完成签到,获得积分10
3秒前
CipherSage应助prode采纳,获得10
3秒前
3秒前
蓝胖子发布了新的文献求助10
4秒前
4秒前
拾年发布了新的文献求助10
5秒前
宋晨瑜完成签到,获得积分10
5秒前
桃花岛岛主完成签到 ,获得积分10
6秒前
雾里看花水中望月完成签到,获得积分10
6秒前
宋晨瑜发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
张火火完成签到,获得积分10
9秒前
阿言发布了新的文献求助10
10秒前
11秒前
11秒前
独特纸飞机完成签到 ,获得积分10
12秒前
牧紫菱完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
冷艳铁身发布了新的文献求助10
13秒前
Phoebe完成签到,获得积分10
13秒前
马来自农村的马完成签到 ,获得积分10
15秒前
15秒前
ju龙哥完成签到,获得积分10
17秒前
17秒前
李健的粉丝团团长应助asda采纳,获得30
17秒前
Owen发布了新的文献求助20
18秒前
20秒前
情怀应助懿懿采纳,获得10
20秒前
xiaoxueyi发布了新的文献求助10
22秒前
冷艳铁身完成签到,获得积分10
23秒前
123发布了新的文献求助10
24秒前
鳗鱼捕完成签到,获得积分10
24秒前
曾绍炜完成签到,获得积分10
24秒前
Criminology34应助白小黑采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749517
求助须知:如何正确求助?哪些是违规求助? 5459212
关于积分的说明 15363842
捐赠科研通 4888951
什么是DOI,文献DOI怎么找? 2628829
邀请新用户注册赠送积分活动 1577110
关于科研通互助平台的介绍 1533774