Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition

运动表象 脑电图 卷积神经网络 人工智能 计算机科学 语音识别 一般化 机器学习 学习迁移 深度学习 模式识别(心理学) 心理学 脑-机接口 数学分析 数学 精神科
作者
Wenjie Li,Haoyu Li,Xinlin Sun,Huicong Kang,Shan An,Guoxin Wang,Zhongke Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026038-026038 被引量:3
标识
DOI:10.1088/1741-2552/ad3986
摘要

Abstract Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
3秒前
3秒前
顾矜应助斯文芸采纳,获得10
5秒前
duoduoforever完成签到,获得积分10
5秒前
情怀应助钱多多采纳,获得10
5秒前
852应助songvv采纳,获得10
5秒前
SciGPT应助大芳儿采纳,获得10
6秒前
7秒前
7秒前
8秒前
深情安青应助开心超人采纳,获得10
9秒前
9秒前
王翎力发布了新的文献求助10
10秒前
allegiance发布了新的文献求助10
12秒前
洛苏发布了新的文献求助10
12秒前
可爱紫文完成签到 ,获得积分10
12秒前
不安溪灵完成签到,获得积分10
12秒前
小小鱼完成签到 ,获得积分10
12秒前
深情安青应助布曲采纳,获得10
15秒前
16秒前
ihc完成签到,获得积分10
16秒前
17秒前
神雕侠完成签到,获得积分10
18秒前
19秒前
19秒前
彭于晏应助lumi采纳,获得10
20秒前
大芳儿发布了新的文献求助10
20秒前
斯文败类应助qiaokizhang采纳,获得10
21秒前
Orange应助jinzhen采纳,获得10
22秒前
钱多多发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
NiLou发布了新的文献求助10
23秒前
科研通AI5应助洛苏采纳,获得10
24秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775244
求助须知:如何正确求助?哪些是违规求助? 3320978
关于积分的说明 10202781
捐赠科研通 3035859
什么是DOI,文献DOI怎么找? 1665742
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757700