Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition

运动表象 脑电图 卷积神经网络 人工智能 计算机科学 语音识别 一般化 机器学习 学习迁移 深度学习 模式识别(心理学) 心理学 脑-机接口 数学分析 数学 精神科
作者
Wenjie Li,Haoyu Li,Xinlin Sun,Huicong Kang,Shan An,Guoxin Wang,Zhongke Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026038-026038 被引量:2
标识
DOI:10.1088/1741-2552/ad3986
摘要

Abstract Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
刚刚
刚刚
Twikky发布了新的文献求助10
1秒前
1秒前
小马甲应助芒果采纳,获得10
2秒前
2秒前
心想事成完成签到,获得积分10
4秒前
隐形曼青应助噔噔噔噔采纳,获得10
4秒前
wei发布了新的文献求助10
4秒前
Nature完成签到,获得积分10
4秒前
樱桃苏打水完成签到,获得积分10
5秒前
zhui发布了新的文献求助10
5秒前
金色热浪发布了新的文献求助10
5秒前
pinging应助讲你ing采纳,获得10
7秒前
小九完成签到 ,获得积分10
8秒前
华仔应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
ivy应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
喵酱完成签到,获得积分10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
敬老院N号应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得30
10秒前
淡定的思松应助ww采纳,获得10
10秒前
cxh发布了新的文献求助10
11秒前
11秒前
winstar完成签到,获得积分10
11秒前
Amai发布了新的文献求助20
12秒前
langzi发布了新的文献求助10
12秒前
ZH的天方夜谭完成签到,获得积分20
12秒前
酷波er应助Rrr采纳,获得10
12秒前
Rhodomyrtus关注了科研通微信公众号
12秒前
wei完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794