亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advances in n-Type Chemical Vapor Deposition Diamond Growth: Morphology and Dopant Control

化学气相沉积 掺杂剂 钻石 形态学(生物学) 材料科学 纳米技术 化学工程 沉积(地质) 工程物理 光电子学 冶金 兴奋剂 物理 地质学 工程类 古生物学 沉积物
作者
Rozita Rouzbahani,Kamatchi Jothiramalingam Sankaran,Paulius Pobedinskas,Ken Haenen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (7): 775-785 被引量:4
标识
DOI:10.1021/accountsmr.3c00273
摘要

ConspectusDiamond, a wide bandgap semiconductor, has captivated researchers for decades due to its exceptional properties. While p-type doping has dominated the field, the advent of n-type diamond, doped by nitrogen or phosphorus, has unlocked novel prospects for diverse applications. Nonetheless, the chemical vapor deposition (CVD) of n-type diamond faces substantial hurdles, particularly concerning crystalline quality and dopant concentration control. In this Account, we summarize our progress in developing high quality CVD n-type diamond films. Our research initiates with nitrogen introduction into the CH4/H2 CVD plasma for depositing polycrystalline diamond films. The addition of 4% N2 gas induces the formation of ultra-nanosized diamond grains through CN species, but further increases in nitrogen content result in grain agglomeration into larger sizes. Fixing 3% of N2 in the CVD plasma, we explore the influence of methane concentration on N-doped nanocrystalline diamond (NCD) films. At a low methane concentration of 1%, faceted diamond grains are formed, while increasing methane to 15% yields nanoneedles encased in nanographitic phases, featuring a low resistivity of 90 Ω·cm. We further investigate P-doped polycrystalline diamond films, where preliminary examinations of P-doped NCD reveal well-defined grain structures but also morphological imperfections and twin boundaries, with a phosphorus incorporation of ≈1019 cm–3. Our investigations also cover P-doped (110)-textured polycrystalline CVD diamond films, finding that the phosphorus concentration varies with grain misorientation and that higher phosphine concentrations lead to a more uniform distribution. Additionally, we note that an increase in the [P]/[C] ratio in the CVD plasma of P-doped diamond growths leads to the transformation of NCD to ultra-NCD, reducing residual stress, and affecting film quality. In a complementary investigation, we explore the codoping of NCD films with nitrogen and phosphorus, observing a transition from micron-sized faceted diamond grains to nanosized grains with increasing nitrogen content at a fixed amount of phosphorus concentration in the CVD plasma.Exploring diamond's potential as a semiconductor, our research group investigated the captivating properties of P-doped single crystal diamond films, given a shallower donor energy level of 0.6 eV compared to nitrogen's deep donor level at 1.7 eV. Our findings indicate optically active defects with various electronic levels, using a doping range from 1016 to 1019 cm–3 in (111)-oriented P-doped diamond epilayers. However, challenges like formation of defects, persist for this orientation. In contrast, (100)-oriented diamond films are renowned for the p-type conductivity and high crystalline quality, though achieving n-type conductivity remains a challenge. Our research highlights the critical role of varying methane concentration during CVD in influencing both crystalline quality and phosphorus concentration. Elevated methane concentrations are found to induce surface degradation, affecting film quality and doping level. Surprisingly, (110)-oriented P-doped single crystal diamond growth demonstrates promising results with a 33 μm/h deposition rate using only 1% methane concentration. Furthermore, the off-angle from the (110) orientation can potentially impact film quality, indicated by cathodoluminescence spectroscopy, offering exciting prospects for future research.The insights provided in this Account will illuminate the CVD growth of n-type diamond films, contributing to the advancement of diamond-based devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的初蓝完成签到 ,获得积分10
22秒前
1分钟前
zzz完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
木易弥完成签到,获得积分10
2分钟前
uss完成签到,获得积分10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
曾经的彩虹完成签到,获得积分10
4分钟前
cai关闭了cai文献求助
4分钟前
cai完成签到,获得积分10
4分钟前
Andy完成签到,获得积分10
5分钟前
楠楠2001完成签到 ,获得积分10
5分钟前
科研通AI2S应助liyifengli采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
酷波er应助科研通管家采纳,获得20
6分钟前
激动的似狮完成签到,获得积分10
7分钟前
wbs13521完成签到,获得积分10
7分钟前
乔琪乔完成签到,获得积分10
7分钟前
乔琪乔发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
玛琳卡迪马完成签到,获得积分10
8分钟前
8分钟前
闪闪笑晴发布了新的文献求助10
8分钟前
科研人完成签到 ,获得积分10
8分钟前
完美世界应助K.I.D采纳,获得10
9分钟前
FashionBoy应助鲸鱼吻着浪采纳,获得10
10分钟前
鲸鱼吻着浪给鲸鱼吻着浪的求助进行了留言
11分钟前
11分钟前
K.I.D发布了新的文献求助10
11分钟前
11分钟前
11分钟前
Perion完成签到 ,获得积分10
11分钟前
12分钟前
13分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238972
求助须知:如何正确求助?哪些是违规求助? 2884275
关于积分的说明 8232854
捐赠科研通 2552320
什么是DOI,文献DOI怎么找? 1380656
科研通“疑难数据库(出版商)”最低求助积分说明 649068
邀请新用户注册赠送积分活动 624769