Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space

激光诱导击穿光谱 背景(考古学) 管道(软件) 光谱成像 计算机科学 成像光谱学 傅里叶变换 人工智能 高光谱成像 化学成像 数据采集 噪音(视频) 数据处理 样品(材料) 光学 激光器 物理 量子力学 生物 操作系统 古生物学 热力学 图像(数学) 程序设计语言
作者
Tomás Lopes,Diana Capela,Miguel Ferreira,Diana Guimarães,P. A. S. Jorge,Nuno Silva
出处
期刊:Applied Spectroscopy [SAGE]
标识
DOI:10.1177/00037028241246545
摘要

Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Annie完成签到,获得积分10
1秒前
1秒前
通~发布了新的文献求助30
2秒前
2秒前
雨雾发布了新的文献求助10
3秒前
daiyapeng完成签到,获得积分10
3秒前
ivy应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
36456657应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
36456657应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得30
5秒前
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
5秒前
顾闭月发布了新的文献求助10
5秒前
5秒前
活力绮兰应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794