Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space

激光诱导击穿光谱 背景(考古学) 管道(软件) 光谱成像 计算机科学 成像光谱学 傅里叶变换 人工智能 高光谱成像 化学成像 数据采集 噪音(视频) 数据处理 样品(材料) 光学 激光器 物理 量子力学 生物 操作系统 古生物学 热力学 图像(数学) 程序设计语言
作者
Tomás Lopes,Diana Capela,Miguel Ferreira,Diana Guimarães,P. A. S. Jorge,Nuno Silva
出处
期刊:Applied Spectroscopy [SAGE Publishing]
标识
DOI:10.1177/00037028241246545
摘要

Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼海露完成签到,获得积分10
1秒前
王子安应助Ccccn采纳,获得10
1秒前
小二郎应助斯文黎云采纳,获得10
1秒前
光年发布了新的文献求助10
2秒前
ayin完成签到,获得积分10
2秒前
犹豫的夜南给犹豫的夜南的求助进行了留言
3秒前
3秒前
3秒前
3秒前
yui应助申申采纳,获得10
3秒前
3秒前
4秒前
万能图书馆应助foxp3采纳,获得30
4秒前
ding应助南木采纳,获得10
5秒前
如意怡完成签到,获得积分10
5秒前
moon发布了新的文献求助10
6秒前
伶俐烤鸡完成签到,获得积分10
6秒前
6秒前
魁梧的笑阳完成签到 ,获得积分10
7秒前
菠萝李完成签到,获得积分10
7秒前
8秒前
laryc完成签到,获得积分10
8秒前
卡卡西应助唐小鸭采纳,获得20
8秒前
热情的夏发布了新的文献求助10
8秒前
woburenshini完成签到,获得积分10
9秒前
悦耳若云发布了新的文献求助10
9秒前
orixero应助tuya采纳,获得20
10秒前
CodeCraft应助恋雅颖月采纳,获得10
11秒前
m123发布了新的文献求助10
11秒前
11秒前
完美世界应助ccc采纳,获得10
11秒前
12秒前
二大爷发布了新的文献求助10
12秒前
我是老大应助moon采纳,获得10
14秒前
SRQ发布了新的文献求助20
15秒前
15秒前
科研通AI2S应助碧蓝世立采纳,获得10
16秒前
Lucas应助一颗橙子采纳,获得10
16秒前
郴欧尼发布了新的文献求助10
16秒前
常大有发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180