已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features

人工神经网络 Nexus(标准) 人工智能 计算机科学 机器学习 特征(语言学) 语言学 哲学 嵌入式系统
作者
Moritz Walter,Samuel J. Webb,Valerie J. Gillet
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00127
摘要

Neural network models have become a popular machine-learning technique for the toxicity prediction of chemicals. However, due to their complex structure, it is difficult to understand predictions made by these models which limits confidence. Current techniques to tackle this problem such as SHAP or integrated gradients provide insights by attributing importance to the input features of individual compounds. While these methods have produced promising results in some cases, they do not shed light on how representations of compounds are transformed in hidden layers, which constitute how neural networks learn. We present a novel technique to interpret neural networks which identifies chemical substructures in training data found to be responsible for the activation of hidden neurons. For individual test compounds, the importance of hidden neurons is determined, and the associated substructures are leveraged to explain the model prediction. Using structural alerts for mutagenicity from the Derek Nexus expert system as ground truth, we demonstrate the validity of the approach and show that model explanations are competitive with and complementary to explanations obtained from an established feature attribution method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到 ,获得积分10
3秒前
深情安青应助小九九采纳,获得10
4秒前
akun完成签到,获得积分10
5秒前
10秒前
可爱的函函应助yiyi采纳,获得10
10秒前
10秒前
魏凯源完成签到,获得积分10
12秒前
Orange应助晴子采纳,获得10
14秒前
alxat发布了新的文献求助10
14秒前
敬业乐群完成签到,获得积分10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
Tanya47应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Rdx发布了新的文献求助10
17秒前
18秒前
镜小小静发布了新的文献求助10
19秒前
鸣蜩阿六完成签到,获得积分10
21秒前
小九九发布了新的文献求助10
21秒前
22秒前
23秒前
26秒前
27秒前
28秒前
壮观沉鱼完成签到 ,获得积分10
31秒前
晴子发布了新的文献求助10
31秒前
移动马桶完成签到 ,获得积分10
32秒前
北觅完成签到 ,获得积分10
33秒前
wqh完成签到,获得积分10
33秒前
充电宝应助镜小小静采纳,获得10
35秒前
35秒前
morena发布了新的文献求助10
37秒前
小太阳发布了新的文献求助10
37秒前
38秒前
舒心小海豚完成签到 ,获得积分10
40秒前
40秒前
挚智完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855050
关于积分的说明 15106557
捐赠科研通 4822312
什么是DOI,文献DOI怎么找? 2581389
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493787