已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features

人工神经网络 Nexus(标准) 人工智能 计算机科学 机器学习 特征(语言学) 语言学 哲学 嵌入式系统
作者
Moritz Walter,Samuel J. Webb,Valerie J. Gillet
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00127
摘要

Neural network models have become a popular machine-learning technique for the toxicity prediction of chemicals. However, due to their complex structure, it is difficult to understand predictions made by these models which limits confidence. Current techniques to tackle this problem such as SHAP or integrated gradients provide insights by attributing importance to the input features of individual compounds. While these methods have produced promising results in some cases, they do not shed light on how representations of compounds are transformed in hidden layers, which constitute how neural networks learn. We present a novel technique to interpret neural networks which identifies chemical substructures in training data found to be responsible for the activation of hidden neurons. For individual test compounds, the importance of hidden neurons is determined, and the associated substructures are leveraged to explain the model prediction. Using structural alerts for mutagenicity from the Derek Nexus expert system as ground truth, we demonstrate the validity of the approach and show that model explanations are competitive with and complementary to explanations obtained from an established feature attribution method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放冰香完成签到,获得积分10
刚刚
鹿立轩完成签到 ,获得积分10
刚刚
2秒前
隐形曼青应助Taro采纳,获得10
2秒前
已有琦琦勿扰完成签到,获得积分10
3秒前
4秒前
6秒前
朴实凌旋发布了新的文献求助10
8秒前
multimodal完成签到 ,获得积分0
10秒前
孙漪发布了新的文献求助10
10秒前
12秒前
12秒前
巴豆醇完成签到 ,获得积分10
13秒前
桐桐应助du采纳,获得10
14秒前
打打应助老仙翁采纳,获得10
15秒前
量子星尘发布了新的文献求助10
19秒前
asd发布了新的文献求助30
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
王建平完成签到 ,获得积分10
21秒前
牙粽子完成签到,获得积分10
21秒前
吼吼应助科研通管家采纳,获得10
22秒前
吼吼应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
嗯嗯应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得100
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Mercy应助科研通管家采纳,获得10
23秒前
吼吼应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
嗯嗯应助科研通管家采纳,获得40
23秒前
吼吼应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
嗯嗯应助科研通管家采纳,获得10
23秒前
Mercy应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
老仙翁完成签到,获得积分10
26秒前
bkagyin应助孙漪采纳,获得10
27秒前
芃芃完成签到 ,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680814
求助须知:如何正确求助?哪些是违规求助? 5002251
关于积分的说明 15174220
捐赠科研通 4840651
什么是DOI,文献DOI怎么找? 2594293
邀请新用户注册赠送积分活动 1547351
关于科研通互助平台的介绍 1505310