Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features

人工神经网络 Nexus(标准) 人工智能 计算机科学 机器学习 特征(语言学) 语言学 哲学 嵌入式系统
作者
Moritz Walter,Samuel J. Webb,Valerie J. Gillet
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00127
摘要

Neural network models have become a popular machine-learning technique for the toxicity prediction of chemicals. However, due to their complex structure, it is difficult to understand predictions made by these models which limits confidence. Current techniques to tackle this problem such as SHAP or integrated gradients provide insights by attributing importance to the input features of individual compounds. While these methods have produced promising results in some cases, they do not shed light on how representations of compounds are transformed in hidden layers, which constitute how neural networks learn. We present a novel technique to interpret neural networks which identifies chemical substructures in training data found to be responsible for the activation of hidden neurons. For individual test compounds, the importance of hidden neurons is determined, and the associated substructures are leveraged to explain the model prediction. Using structural alerts for mutagenicity from the Derek Nexus expert system as ground truth, we demonstrate the validity of the approach and show that model explanations are competitive with and complementary to explanations obtained from an established feature attribution method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
4秒前
6秒前
lsx发布了新的文献求助10
6秒前
dili发布了新的文献求助20
6秒前
6秒前
Akim应助富贵李采纳,获得10
6秒前
慕青应助bobo采纳,获得10
7秒前
鬼豆完成签到,获得积分10
7秒前
7秒前
老姚发布了新的文献求助10
8秒前
8秒前
我要向阳而生完成签到 ,获得积分10
8秒前
111完成签到,获得积分10
8秒前
9秒前
852应助乐观笑南采纳,获得10
9秒前
10秒前
10秒前
10秒前
浮游应助Percy采纳,获得10
10秒前
sswbzh应助xxsw采纳,获得200
11秒前
11秒前
lls发布了新的文献求助10
11秒前
wf0806发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
上官若男应助sqq采纳,获得10
13秒前
wangxw完成签到,获得积分10
13秒前
Li完成签到,获得积分20
13秒前
14秒前
15秒前
小小K发布了新的文献求助10
15秒前
动听葵阴发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
活在当下发布了新的文献求助10
17秒前
mingtian发布了新的文献求助10
17秒前
青山有别完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145