Fabrication of Large-Grained Perovskite Films Utilizing a Recrystallization Approach Involving Multiple Vapor Annealing Steps

再结晶(地质) 制作 退火(玻璃) 材料科学 化学工程 纳米技术 冶金 地质学 工程类 医学 古生物学 替代医学 病理
作者
Junshuai Fan,Yuanyuan Chen,Anqi Kong,Qingyuan Tan,Jialing Zhong,Lixin Zhang,Yong Peng,Guijie Liang,Zhiliang Ku
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (9): 3740-3749
标识
DOI:10.1021/acsaem.4c00080
摘要

The swift advancement in perovskite solar cell (PSC) technology has garnered considerable interest, necessitating the move toward commercial production. Vapor deposition presents notable benefits for fabricating PSCs on a large scale with high output rates. Nonetheless, perovskite films produced via this method are prone to internal imperfections, poor crystallinity, and small grain sizes. Consequently, post-treatment processes for vapor-deposited perovskite films become crucial. In this study, we explored the impact of methylammonium chloride vapor annealing on the vapor-deposited perovskite films. Our research revealed that traditional one-step vapor annealing could indeed enlarge the grain size. However, the extended duration of treatment often resulted in numerous pinholes and inconsistent grain size distribution across the film surface. Since the presence of pinhole-free films is critical for enhancing the efficiency of photovoltaic conversion, this method, which fails to improve and may even degrade film performance, is not ideal. To address these issues and fabricate high-quality perovskite films without pinholes, we implemented a multiple vapor annealing approach. This method, rooted in a vapor treatment-induced recrystallization strategy, involves repeated fine-tuning of the crystal growth direction and controlling the rate of growth. As a result, we successfully produced perovskite films with superior crystallinity, large and uniformly distributed grains, and enhanced performance, all devoid of pinholes. The grain size was augmented from an initial size of 800 nm to approximately 3 μm. In line with these improvements, the PSC devices and modules created using this refined method attained photovoltaic conversion efficiencies of 21.29% (0.1475 cm2) and 18.53% (10 cm2), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙皓然完成签到 ,获得积分10
1秒前
3秒前
3秒前
5秒前
逐风给逐风的求助进行了留言
6秒前
科研通AI5应助灌饼采纳,获得30
6秒前
Owen应助Zzzzzzzzzzz采纳,获得10
7秒前
8秒前
9秒前
巫马秋寒应助笑点低可乐采纳,获得10
9秒前
xuex1完成签到,获得积分10
9秒前
情怀应助阳光的雁山采纳,获得10
11秒前
斯文败类应助jy采纳,获得10
11秒前
11秒前
日月轮回发布了新的文献求助10
12秒前
36456657应助木香采纳,获得10
13秒前
无花果应助ns采纳,获得30
13秒前
刘铭晨完成签到,获得积分10
13秒前
14秒前
YY发布了新的文献求助10
14秒前
Rrr发布了新的文献求助10
15秒前
学术蠕虫发布了新的文献求助10
15秒前
15秒前
miumiuka完成签到,获得积分10
16秒前
个性的薯片应助lyt采纳,获得20
18秒前
sweetbearm应助寒涛先生采纳,获得10
19秒前
wanci应助YY采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
HC完成签到 ,获得积分10
23秒前
姚姚的赵赵完成签到,获得积分10
23秒前
JamesPei应助大豪子采纳,获得30
24秒前
jy发布了新的文献求助10
24秒前
24秒前
陆靖易发布了新的文献求助10
24秒前
LQW完成签到,获得积分20
25秒前
26秒前
plant完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808