Biological optics, photonics and bioinspired radiative cooling

辐射冷却 辐射传输 反射(计算机编程) 纳米技术 工程物理 光电子学 物理 材料科学 光学 计算机科学 热力学 程序设计语言
作者
Zhen Yan,Huatian Zhai,D. D. Fan,Qiang Li
出处
期刊:Progress in Materials Science [Elsevier BV]
卷期号:144: 101291-101291 被引量:23
标识
DOI:10.1016/j.pmatsci.2024.101291
摘要

Radiative cooling with eco-friendly and zero-energy advantages is considered one of the most viable solutions to address the conflict between traditional energy-intensive cooling systems and global decarbonization. Despite significant advances, the development of radiative cooling still faces many challenges, such as fine-engineering of materials and structures to enhance solar reflection and mid-infrared emission, solar absorption caused by coloring for colorful radiative cooling, and spectral modulation for environmental-adaptative dynamic radiative cooling. Over millions of years of natural selection, utilizing a limited set of biomaterial palettes, optimized strategies, and micro-nano structural design, natural organisms have demonstrated fine control over light-matter interactions at different wavelength scales. Including broadband reflection of the sunlight to prevent solar heating, narrowband reflection of visible light to display brilliant colors, strong emission of mid-infrared wave to complete its cooling, and environmental-adaptative spectral modulation to achieve camouflage or thermal regulation. These biological structures and strategies provide extremely valuable inspiration for the development of advanced radiative cooling techniques. In this review, we systematically summarized the research progress of bioinspired radiative cooling technologies. Emphatically introducing the mechanism of key biological structures to achieve several optical functions, and discussing the various bioinspired radiative coolers and their application potential in different fields. Finally, we present the remaining challenges and outlook on the possible research directions in the future. It is hoped that this review will contribute to further research on bioinspired radiative cooling technology and make exciting progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗芒果发布了新的文献求助10
1秒前
科研通AI5应助张多采纳,获得10
1秒前
chen完成签到,获得积分10
2秒前
毕业发布了新的文献求助10
2秒前
香菜皮蛋完成签到 ,获得积分10
3秒前
zx598376321完成签到,获得积分10
3秒前
An完成签到,获得积分10
3秒前
shenyu完成签到 ,获得积分10
4秒前
夏傥完成签到,获得积分10
4秒前
ovo发布了新的文献求助10
4秒前
清爽的采萱完成签到,获得积分10
4秒前
5秒前
111完成签到,获得积分10
6秒前
Bruce发布了新的文献求助10
6秒前
6秒前
BASS完成签到,获得积分10
6秒前
舒心的耷完成签到,获得积分10
7秒前
游江大瓠完成签到 ,获得积分10
7秒前
zf完成签到,获得积分10
7秒前
沐沐完成签到,获得积分10
7秒前
小草三心完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
skps970110发布了新的文献求助10
9秒前
10秒前
悠悠完成签到,获得积分10
10秒前
从容乌完成签到 ,获得积分10
10秒前
慕容博发布了新的文献求助10
10秒前
linxi完成签到,获得积分10
11秒前
一颗橙子完成签到,获得积分10
11秒前
王多肉完成签到,获得积分10
11秒前
boom完成签到,获得积分10
12秒前
李小聪完成签到 ,获得积分10
12秒前
科研小白完成签到 ,获得积分10
13秒前
周欣完成签到 ,获得积分10
13秒前
正直花生完成签到,获得积分10
13秒前
13秒前
QXS完成签到 ,获得积分10
13秒前
坦率尔琴完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725576
求助须知:如何正确求助?哪些是违规求助? 3270462
关于积分的说明 9966209
捐赠科研通 2985536
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777806
科研通“疑难数据库(出版商)”最低求助积分说明 747261