Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering

计算机科学 聚类分析 空间分析 判别式 图形 人工智能 特征学习 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 统计
作者
Zhang Ying-xi,Zhuohan Yu,Ka‐Chun Wong,Xiangtao Li
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btae451
摘要

Abstract Motivation Spatial transcriptomics can quantify gene expression and its spatial distribution in tissues, thus revealing molecular mechanisms of cellular interactions underlying tissue heterogeneity, tissue regeneration, and spatially localized disease mechanisms. However, existing spatial clustering methods often fail to exploit the full potential of spatial information, resulting in inaccurate identification of spatial domains. Results In this paper, we develop a deep graph contrastive clustering framework, stDGCC, that accurately uncovers underlying spatial domains via explicitly modeling spatial information and gene expression profiles from spatial transcriptomics data. The stDGCC framework proposes a spatially informed graph node embedding model to preserve the topological information of spots and to learn the informative and discriminative characterization of spatial transcriptomics data through self-supervised contrastive learning. By simultaneously optimizing the contrastive learning loss, reconstruction loss, and Kullback–Leibler (KL) divergence loss, stDGCC achieves joint optimization of feature learning and topology structure preservation in an end-to-end manner. We validate the effectiveness of stDGCC on various spatial transcriptomics datasets acquired from different platforms, each with varying spatial resolutions. Our extensive experiments demonstrate the superiority of stDGCC over various state-of-the-art clustering methods in accurately identifying cellular-level biological structures. Availability Code and data are available from https://github.com/TimE9527/stDGCC and https://figshare.com/projects/stDGCC/186525. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
和谐的寄凡完成签到,获得积分10
刚刚
1秒前
2秒前
品品发布了新的文献求助10
2秒前
2秒前
无极微光应助zbm采纳,获得20
2秒前
zhujingyao完成签到,获得积分10
3秒前
6秒前
小小发布了新的文献求助10
7秒前
betterme发布了新的文献求助30
7秒前
7秒前
7秒前
sayso发布了新的文献求助10
8秒前
ding应助白河采纳,获得30
8秒前
8秒前
8秒前
superfatcat完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
hhh完成签到,获得积分10
10秒前
10秒前
kks569发布了新的文献求助10
11秒前
11秒前
好好完成签到 ,获得积分10
11秒前
吴玉杰完成签到,获得积分10
11秒前
品品完成签到,获得积分10
11秒前
Akim应助熙原采纳,获得10
12秒前
13秒前
ZHN完成签到,获得积分10
14秒前
15秒前
16秒前
ebby发布了新的文献求助10
16秒前
jgtrd发布了新的文献求助10
16秒前
Peter完成签到 ,获得积分10
18秒前
莱十一完成签到,获得积分10
18秒前
19秒前
19秒前
wanmiao12完成签到,获得积分10
20秒前
老迟到的若魔完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304