Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes

协变量 数学 计量经济学 统计
作者
Canhui Li,Donglin Zeng,W. J. Zhu
出处
期刊:Biometrika [Oxford University Press]
标识
DOI:10.1093/biomet/asae036
摘要

Abstract One of the most important problems in precision medicine is to find the optimal individualized treatment rule, which is designed to recommend treatment decisions and maximize overall clinical benefit to patients based on their individual characteristics. Typically, the expected clinical outcome is required to be estimated first, for which an outcome regression model or a propensity score model usually needs to be assumed with most existing statistical methods. However, if either model assumption is invalid, the estimated treatment regime will not be reliable. In this article, we first define a contrast value function, which forms the basis for the study of individualized treatment regimes. Then we construct a hybrid estimator of the contrast value function by combining two types of estimation methods. We further propose a robust covariate-balancing estimator of the contrast value function by combining the inverse probability weighted method and matching method, which is based on the covariate balancing propensity score proposed by Imai & Ratkovic (2014). Theoretical results show that the proposed estimator is doubly robust, ie, it is consistent if either the propensity score model or the matching is correct. Based on a large number of simulation studies, we demonstrate that the proposed estimator outperforms existing methods. Application of the proposed method is illustrated through analysis of the SUPPORT study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MOLLY完成签到,获得积分10
3秒前
3秒前
3秒前
downloadpapers完成签到,获得积分10
4秒前
XJ完成签到,获得积分10
9秒前
10秒前
年轻水壶完成签到 ,获得积分10
11秒前
12秒前
脑洞疼应助喵喵采纳,获得30
12秒前
一蓑烟雨任平生应助mh_yang采纳,获得10
12秒前
积极乐观阳光开朗完成签到,获得积分10
14秒前
15秒前
南风知我意完成签到,获得积分10
16秒前
16秒前
whisper完成签到,获得积分10
17秒前
colin发布了新的文献求助10
19秒前
20秒前
好吃马匹发布了新的文献求助10
20秒前
英俊的铭应助LJT采纳,获得10
21秒前
小蘑菇应助无情飞风采纳,获得10
21秒前
justsayit完成签到 ,获得积分10
23秒前
24秒前
大饼发布了新的文献求助30
25秒前
Hello应助Guo采纳,获得10
25秒前
25秒前
小冯住院医师完成签到,获得积分10
26秒前
NexusExplorer应助tkdzjr12345采纳,获得10
27秒前
27秒前
易达发布了新的文献求助10
28秒前
所所应助半山采纳,获得30
29秒前
小二郎应助晴天采纳,获得10
31秒前
碧蓝的友儿完成签到 ,获得积分10
31秒前
32秒前
科研通AI2S应助lgh采纳,获得10
32秒前
cfplhys发布了新的文献求助10
32秒前
知性的代亦完成签到,获得积分10
32秒前
我爱学习发布了新的文献求助10
33秒前
33秒前
35秒前
36秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346345
求助须知:如何正确求助?哪些是违规求助? 2973142
关于积分的说明 8657815
捐赠科研通 2653539
什么是DOI,文献DOI怎么找? 1453184
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662665