Accounting for time-varying exposures and covariates in the relationship between obesity and diabetes: analysis using parametric g-formula

医学 肥胖 超重 糖尿病 体质指数 协变量 危险系数 内科学 比例危险模型 流行病学 人口学 置信区间 内分泌学 统计 数学 社会学
作者
Boyoung Park,Junghyun Yoon,Thị Xuân Mai Trần
出处
期刊:Journal of Epidemiology and Community Health [BMJ]
卷期号:: jech-221882
标识
DOI:10.1136/jech-2023-221882
摘要

Background Previous studies investigating the association between obesity and diabetes often did not consider the role of time-varying covariates affected by previous obesity status. This study quantified the association between obesity and diabetes using parametric g-formula. Methods We included 8924 participants without diabetes from the Korean Genome and Epidemiology Study—Ansan and Ansung study(2001–2002)—with up to the seventh biennial follow-up data from 2015 to 2016. Obesity status was categorised as normal (body mass index (BMI) <23.5 kg/m 2 ), overweight (23.5–24.9 kg/m 2 ), obese 1 (25.0–27.4 kg/m 2 ) and obese 2 (≥27.5 kg/m 2 ). Hazard ratios (HRs) comparing baseline or time-varying obesity status were estimated using Cox models, whereas risk ratio (RR) was estimated using g-formula. Results The Cox model for baseline obesity status demonstrated an increased risk of diabetes in overweight (HR 1.85; 95% CI=1.48–2.31), obese 1 (2.40; 1.97–2.93) and obese 2 (3.65; 2.98–4.47) statuses than that in normal weight status. Obesity as a time-varying exposure with time-varying covariates had HRs of 1.31 (1.07–1.60), 1.55 (1.29–1.86) and 2.58 (2.14–3.12) for overweight, obese 1 and obese 2 statuses. Parametric g-formula comparing if everyone had been in each obesity category versus normal over 15 years showed increased associations of RRs of 1.37 (1.34–1.40), 1.78 (1.76–1.80) and 2.42 (2.34–2.50). Conclusions Higher BMI classification category was associated with increased risk of diabetes after accounting for time-varying covariates using g-formula. The results from g-formula were smaller than when considering baseline obesity status only but comparable with the results from time-varying Cox model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzz完成签到,获得积分20
2秒前
2秒前
2秒前
jike发布了新的文献求助10
4秒前
裴帅龙发布了新的文献求助10
4秒前
今后应助karna采纳,获得10
5秒前
5秒前
kk完成签到,获得积分10
5秒前
Lucas应助hufan2441采纳,获得30
6秒前
聂白晴完成签到,获得积分20
6秒前
7秒前
荔枝完成签到,获得积分10
7秒前
8秒前
....完成签到 ,获得积分10
8秒前
Akim应助slj采纳,获得10
9秒前
裴帅龙完成签到,获得积分20
9秒前
领导范儿应助泥嚎采纳,获得10
9秒前
张雯思发布了新的文献求助10
10秒前
7iy关注了科研通微信公众号
10秒前
深情安青应助zzzz采纳,获得20
12秒前
可爱的函函应助平淡汽车采纳,获得10
13秒前
聂白晴发布了新的文献求助30
13秒前
充电宝应助裴帅龙采纳,获得30
14秒前
YOLO完成签到,获得积分10
14秒前
14秒前
16秒前
赘婿应助干净又晴采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176