Efficient Microbubble Trajectory Tracking in Ultrasound Localization Microscopy Using a Gated Recurrent Unit-Based Multitasking Temporal Neural Network

人类多任务处理 弹道 跟踪(教育) 超声波 微气泡 人工神经网络 计算机科学 显微镜 计算机视觉 单位(环理论) 人工智能 生物医学工程 神经科学 声学 物理 医学 光学 心理学 数学教育 天文 教育学
作者
Yuting Zhang,Wenjun Zhou,Lijie Huang,Yongjie Shao,Anguo Luo,Jianwen Luo,Bo Peng
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3424955
摘要

Ultrasound Localization Microscopy (ULM), an emerging medical imaging technique, effectively resolves the classical trade-off between resolution and penetration inherent in traditional ultrasound imaging, opening up new avenues for noninvasive observation of the microvascular system. However, traditional microbubble tracking methods encounter various practical challenges. These methods typically entail multiple processing stages, including intricate steps like pairwise correlation and trajectory optimization, rendering real-time applications unfeasible. Furthermore, existing deep learning-based tracking techniques neglect the temporal aspects of microbubble motion, leading to ineffective modeling of their dynamic behavior. To address these limitations, this study introduces a novel approach called the Gated Recurrent Unit (GRU)-based Multitasking Temporal Neural Network (GRU-MT). GRU-MT is designed to simultaneously handle microbubble trajectory tracking and trajectory optimization tasks. Additionally, we enhance the nonlinear motion model initially proposed by Piepenbrock et al. to better encapsulate the nonlinear motion characteristics of microbubbles, thereby improving trajectory tracking accuracy. In this study, we perform a series of experiments involving network layer substitutions to systematically evaluate the performance of various temporal neural networks, including Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), GRU, Transformer, and its bidirectional counterparts, on the microbubble trajectory tracking task. Concurrently, the proposed method undergoes qualitative and quantitative comparisons with traditional microbubble tracking techniques. The experimental results demonstrate that GRU-MT exhibits superior nonlinear modeling capabilities and robustness, both in simulation and in vivo dataset. Additionally, it achieves reduced trajectory tracking errors in shorter time intervals, underscoring its potential for efficient microbubble trajectory tracking. Model code is open-sourced at https://github.com/zyt-Lib/GRU-MT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得80
1秒前
无花果应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
11111111发布了新的文献求助10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
MchemG应助科研通管家采纳,获得30
2秒前
李健应助科研通管家采纳,获得10
2秒前
小马过河应助科研通管家采纳,获得10
2秒前
江沫应助科研通管家采纳,获得10
2秒前
江沫应助科研通管家采纳,获得10
3秒前
江沫应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Aaron完成签到,获得积分10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070