已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Microbubble Trajectory Tracking in Ultrasound Localization Microscopy Using a Gated Recurrent Unit-Based Multitasking Temporal Neural Network

人类多任务处理 弹道 跟踪(教育) 超声波 微气泡 人工神经网络 计算机科学 显微镜 计算机视觉 单位(环理论) 人工智能 生物医学工程 神经科学 声学 物理 医学 光学 心理学 数学教育 天文 教育学
作者
Yuting Zhang,Wenjun Zhou,Lijie Huang,Yongjie Shao,Anguo Luo,Jianwen Luo,Bo Peng
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3424955
摘要

Ultrasound Localization Microscopy (ULM), an emerging medical imaging technique, effectively resolves the classical trade-off between resolution and penetration inherent in traditional ultrasound imaging, opening up new avenues for noninvasive observation of the microvascular system. However, traditional microbubble tracking methods encounter various practical challenges. These methods typically entail multiple processing stages, including intricate steps like pairwise correlation and trajectory optimization, rendering real-time applications unfeasible. Furthermore, existing deep learning-based tracking techniques neglect the temporal aspects of microbubble motion, leading to ineffective modeling of their dynamic behavior. To address these limitations, this study introduces a novel approach called the Gated Recurrent Unit (GRU)-based Multitasking Temporal Neural Network (GRU-MT). GRU-MT is designed to simultaneously handle microbubble trajectory tracking and trajectory optimization tasks. Additionally, we enhance the nonlinear motion model initially proposed by Piepenbrock et al. to better encapsulate the nonlinear motion characteristics of microbubbles, thereby improving trajectory tracking accuracy. In this study, we perform a series of experiments involving network layer substitutions to systematically evaluate the performance of various temporal neural networks, including Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), GRU, Transformer, and its bidirectional counterparts, on the microbubble trajectory tracking task. Concurrently, the proposed method undergoes qualitative and quantitative comparisons with traditional microbubble tracking techniques. The experimental results demonstrate that GRU-MT exhibits superior nonlinear modeling capabilities and robustness, both in simulation and in vivo dataset. Additionally, it achieves reduced trajectory tracking errors in shorter time intervals, underscoring its potential for efficient microbubble trajectory tracking. Model code is open-sourced at https://github.com/zyt-Lib/GRU-MT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Eliauk完成签到 ,获得积分10
7秒前
活泼尔烟发布了新的文献求助10
9秒前
12秒前
14秒前
赘婿应助车灵寒采纳,获得10
16秒前
16秒前
崔梦楠完成签到 ,获得积分10
17秒前
HUNGJJ发布了新的文献求助10
18秒前
无花果应助大佬求帮采纳,获得10
18秒前
Rainnnn发布了新的文献求助10
20秒前
丸太子发布了新的文献求助10
21秒前
香蕉觅云应助Yolo采纳,获得10
24秒前
24秒前
dkjg完成签到 ,获得积分10
28秒前
coollz发布了新的文献求助10
29秒前
mayounaizi14发布了新的文献求助10
29秒前
小二郎应助幸福大白采纳,获得10
30秒前
32秒前
丸太子完成签到,获得积分10
32秒前
larsy完成签到 ,获得积分10
32秒前
jliu完成签到,获得积分10
33秒前
36秒前
科研通AI5应助Rainnnn采纳,获得10
36秒前
小袁冲冲冲完成签到,获得积分10
38秒前
sskaze完成签到 ,获得积分10
38秒前
Yolo发布了新的文献求助10
39秒前
矜天完成签到 ,获得积分10
42秒前
42秒前
42秒前
xnlgha完成签到 ,获得积分10
44秒前
mawari发布了新的文献求助10
45秒前
阳阳发布了新的文献求助10
45秒前
顾矜应助温柔的曼梅采纳,获得10
45秒前
烟花应助活泼尔烟采纳,获得10
45秒前
46秒前
46秒前
liuzhong发布了新的文献求助10
47秒前
美好的可仁完成签到 ,获得积分10
49秒前
传奇3应助mawari采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542