Efficient Microbubble Trajectory Tracking in Ultrasound Localization Microscopy Using a Gated Recurrent Unit-Based Multitasking Temporal Neural Network

人类多任务处理 弹道 跟踪(教育) 超声波 微气泡 人工神经网络 计算机科学 显微镜 计算机视觉 单位(环理论) 人工智能 生物医学工程 神经科学 声学 物理 医学 光学 心理学 教育学 数学教育 天文
作者
Yuting Zhang,Wenjun Zhou,Lijie Huang,Yongjie Shao,Anguo Luo,Jianwen Luo,Bo Peng
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3424955
摘要

Ultrasound Localization Microscopy (ULM), an emerging medical imaging technique, effectively resolves the classical trade-off between resolution and penetration inherent in traditional ultrasound imaging, opening up new avenues for noninvasive observation of the microvascular system. However, traditional microbubble tracking methods encounter various practical challenges. These methods typically entail multiple processing stages, including intricate steps like pairwise correlation and trajectory optimization, rendering real-time applications unfeasible. Furthermore, existing deep learning-based tracking techniques neglect the temporal aspects of microbubble motion, leading to ineffective modeling of their dynamic behavior. To address these limitations, this study introduces a novel approach called the Gated Recurrent Unit (GRU)-based Multitasking Temporal Neural Network (GRU-MT). GRU-MT is designed to simultaneously handle microbubble trajectory tracking and trajectory optimization tasks. Additionally, we enhance the nonlinear motion model initially proposed by Piepenbrock et al. to better encapsulate the nonlinear motion characteristics of microbubbles, thereby improving trajectory tracking accuracy. In this study, we perform a series of experiments involving network layer substitutions to systematically evaluate the performance of various temporal neural networks, including Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), GRU, Transformer, and its bidirectional counterparts, on the microbubble trajectory tracking task. Concurrently, the proposed method undergoes qualitative and quantitative comparisons with traditional microbubble tracking techniques. The experimental results demonstrate that GRU-MT exhibits superior nonlinear modeling capabilities and robustness, both in simulation and in vivo dataset. Additionally, it achieves reduced trajectory tracking errors in shorter time intervals, underscoring its potential for efficient microbubble trajectory tracking. Model code is open-sourced at https://github.com/zyt-Lib/GRU-MT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shiny发布了新的文献求助10
刚刚
刚刚
2秒前
桐桐应助李桥溪采纳,获得10
3秒前
4秒前
rubyyyy完成签到,获得积分10
5秒前
W1ll完成签到,获得积分10
6秒前
Orange应助溱子大人采纳,获得10
6秒前
陈皮发布了新的文献求助10
6秒前
jingmishensi发布了新的文献求助10
7秒前
9秒前
科研通AI2S应助nini采纳,获得10
10秒前
吃猫的鱼发布了新的文献求助10
11秒前
一一发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
李桥溪发布了新的文献求助10
17秒前
17秒前
smiling关注了科研通微信公众号
18秒前
MrIShelter完成签到,获得积分10
19秒前
20秒前
愤怒也哈哈应助光纤陀螺采纳,获得10
20秒前
我我我我应助刘济源采纳,获得10
22秒前
打打应助shiny采纳,获得10
24秒前
张张张完成签到,获得积分10
26秒前
于早上完成签到,获得积分10
26秒前
一一完成签到,获得积分10
26秒前
DrLiu完成签到,获得积分10
27秒前
27秒前
29秒前
唐僧肉臊子面完成签到,获得积分10
29秒前
30秒前
DDDD源完成签到,获得积分10
31秒前
32秒前
郭果儿发布了新的文献求助10
33秒前
sdniuidifod发布了新的文献求助10
33秒前
34秒前
包采梦发布了新的文献求助10
35秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346345
求助须知:如何正确求助?哪些是违规求助? 2973142
关于积分的说明 8657815
捐赠科研通 2653539
什么是DOI,文献DOI怎么找? 1453184
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662665