Efficient Microbubble Trajectory Tracking in Ultrasound Localization Microscopy Using a Gated Recurrent Unit-Based Multitasking Temporal Neural Network

人类多任务处理 弹道 跟踪(教育) 超声波 微气泡 人工神经网络 计算机科学 显微镜 计算机视觉 单位(环理论) 人工智能 生物医学工程 神经科学 声学 物理 医学 光学 心理学 教育学 数学教育 天文
作者
Yuting Zhang,Wenjun Zhou,Lijie Huang,Yongjie Shao,Anguo Luo,Jianwen Luo,Bo Peng
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3424955
摘要

Ultrasound Localization Microscopy (ULM), an emerging medical imaging technique, effectively resolves the classical trade-off between resolution and penetration inherent in traditional ultrasound imaging, opening up new avenues for noninvasive observation of the microvascular system. However, traditional microbubble tracking methods encounter various practical challenges. These methods typically entail multiple processing stages, including intricate steps like pairwise correlation and trajectory optimization, rendering real-time applications unfeasible. Furthermore, existing deep learning-based tracking techniques neglect the temporal aspects of microbubble motion, leading to ineffective modeling of their dynamic behavior. To address these limitations, this study introduces a novel approach called the Gated Recurrent Unit (GRU)-based Multitasking Temporal Neural Network (GRU-MT). GRU-MT is designed to simultaneously handle microbubble trajectory tracking and trajectory optimization tasks. Additionally, we enhance the nonlinear motion model initially proposed by Piepenbrock et al. to better encapsulate the nonlinear motion characteristics of microbubbles, thereby improving trajectory tracking accuracy. In this study, we perform a series of experiments involving network layer substitutions to systematically evaluate the performance of various temporal neural networks, including Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), GRU, Transformer, and its bidirectional counterparts, on the microbubble trajectory tracking task. Concurrently, the proposed method undergoes qualitative and quantitative comparisons with traditional microbubble tracking techniques. The experimental results demonstrate that GRU-MT exhibits superior nonlinear modeling capabilities and robustness, both in simulation and in vivo dataset. Additionally, it achieves reduced trajectory tracking errors in shorter time intervals, underscoring its potential for efficient microbubble trajectory tracking. Model code is open-sourced at https://github.com/zyt-Lib/GRU-MT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棒棒糖完成签到,获得积分10
2秒前
2秒前
4秒前
蓝胖子完成签到 ,获得积分20
5秒前
18702251920发布了新的文献求助10
6秒前
尼龙niuniu发布了新的文献求助10
7秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
炸鸡发布了新的文献求助10
11秒前
11秒前
半颗糖完成签到 ,获得积分10
11秒前
伶俐的千凡完成签到,获得积分10
12秒前
临澈完成签到 ,获得积分10
13秒前
14秒前
juzi发布了新的文献求助50
14秒前
14秒前
未夕晴完成签到,获得积分10
15秒前
乐乐应助still采纳,获得30
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
紫色奶萨完成签到,获得积分10
19秒前
111231发布了新的文献求助10
21秒前
bkagyin应助呆萌的u采纳,获得10
23秒前
Ding-Ding完成签到,获得积分10
24秒前
24秒前
25秒前
28秒前
是各种蕉完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602790
求助须知:如何正确求助?哪些是违规求助? 4688045
关于积分的说明 14852073
捐赠科研通 4686094
什么是DOI,文献DOI怎么找? 2540255
邀请新用户注册赠送积分活动 1506881
关于科研通互助平台的介绍 1471454