A deep attention model for wide-genome protein-peptide binding affinity prediction at a sequence level

计算生物学 序列(生物学) 计算机科学 水准点(测量) 蛋白质结构预测 蛋白质测序 卷积神经网络 PDZ域 人工智能 肽序列 生物 机器学习 蛋白质结构 生物化学 基因 大地测量学 地理
作者
Xiaohan Sun,Zhixiang Wu,Jingjie Su,Chunhua Li
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:276: 133811-133811 被引量:1
标识
DOI:10.1016/j.ijbiomac.2024.133811
摘要

Peptides are pivotal in numerous biological activities by engaging in up to 40 % of protein-protein interactions in many cellular processes. Due to their exceptional specificity and effectiveness, peptides have emerged as promising candidates for drug design. However, accurately predicting protein-peptide binding affinity remains a challenging. Aiming at the problem, we develop a prediction model PepPAP based on convolutional neural network and multi-head attention, which relies solely on sequence features. These features include physicochemical properties, intrinsic disorder, sequence encoding, and especially interface propensity which is extracted from 16,689 non-redundant protein-peptide complexes. Notably, the adopted regression stratification cross-validation scheme proposed in our previous work is beneficial to improve the prediction for the cases with extreme binding affinity values. On three benchmark test datasets: T100, a series of peptides targeting to PDZ domain and CXCR4, PepPAP shows excellent performance, outperforming the existing methods and demonstrating its good generalization ability. Furthermore, PepPAP has good results in binary interaction prediction, and the analysis of the feature space distribution visualization highlights PepPAP's effectiveness. To the best of our knowledge, PepPAP is the first sequence-based deep attention model for wide-genome protein-peptide binding affinity prediction, and holds the potential to offer valuable insights for the peptide-based drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy发布了新的文献求助10
1秒前
CipherSage应助qian采纳,获得10
1秒前
1秒前
1秒前
3秒前
TK完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
852应助嘻嘻采纳,获得10
5秒前
jcm发布了新的文献求助10
6秒前
贤来无事完成签到 ,获得积分10
7秒前
安静的凌萱完成签到,获得积分10
7秒前
7秒前
7秒前
Yu发布了新的文献求助10
7秒前
11发布了新的文献求助10
7秒前
gpy应助zzy采纳,获得10
8秒前
8秒前
Orange应助么么叽采纳,获得10
9秒前
LL应助研新采纳,获得10
9秒前
科目三应助SUN采纳,获得10
9秒前
天宇发布了新的文献求助10
10秒前
元小夏发布了新的文献求助20
10秒前
wwwying发布了新的文献求助10
11秒前
11秒前
sevenseven发布了新的文献求助10
11秒前
12秒前
淡淡红茶发布了新的文献求助10
13秒前
man应助MC采纳,获得20
13秒前
11完成签到,获得积分10
13秒前
岁月轮回发布了新的文献求助10
13秒前
会厌完成签到 ,获得积分10
13秒前
15秒前
15秒前
jcm完成签到,获得积分20
15秒前
16秒前
豪哥大大完成签到,获得积分10
16秒前
17秒前
连难胜发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187