Artificial neural network-based sound insulation optimization design of composite floor of high-speed train

人工神经网络 高速列车 复合数 声音(地理) 隔音 计算机科学 工程类 声学 材料科学 人工智能 复合材料 算法 运输工程 物理
作者
Ye Li,Yumei Zhang,Ruiqian Wang,Zhao Tang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (23): 10964-10977 被引量:1
标识
DOI:10.1177/09544062241278790
摘要

Increasing the speed of high-speed trains requires the lightweight design of vehicles to meet the economic and ecological efficiency requirements of such trains. However, these objectives conflict with the interior noise control in high-speed trains because the sound insulation of panel structures follows the mass law principle. The train floor, the main train body structure of the high-speed train, is vital for interior noise control because its sound insulation performance directly affects the interior noise levels. Owing to the complexity of the composite floor system, reliable measurement and accurate estimation of its sound insulation performance are often time-consuming and laborious. To address this situation, this study proposes an artificial neural network (ANN)-based model to predict the sound insulation characteristics of a composite floor. First, a sound insulation model of the composite floor is built based on statistical energy analysis (SEA). The sound insulation performance of 200 cases of composite floors is calculated by varying the dimensions of the extruded floor, thickness of the webs, sound-absorbing material, and wooden floor to formulate a sound insulation database of composite floors. Next, an ANN model is introduced and trained on the sound insulation database. The sound insulation prediction results obtained using the ANN model are compared to the prediction results obtained using the experiment to validate its effectiveness. Subsequently, the NSGA-II optimization method is used to optimize the sound insulation structure of the composite floor. Compared with the regular composite floor structure, the optimized structure reduced the mass of the composite floor by 10.93 kg and increased the weight of the sound insulation ( R w ) by 6.3 dB. The proposed method can be an effective, economical, and efficient tool for vehicle designers and can help promote the sound insulation optimization design of high-speed train composite floors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
yes完成签到 ,获得积分10
8秒前
sonicker完成签到 ,获得积分10
8秒前
9秒前
11秒前
蓦然完成签到,获得积分20
11秒前
三石完成签到,获得积分10
13秒前
柔弱翎完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
kellen完成签到,获得积分10
21秒前
control完成签到,获得积分10
26秒前
28秒前
小许完成签到 ,获得积分10
29秒前
岩松完成签到 ,获得积分10
29秒前
乘风破浪完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
张庭豪完成签到,获得积分10
33秒前
兴奋雁风完成签到 ,获得积分10
35秒前
小高同学完成签到,获得积分10
36秒前
zhangxinan完成签到,获得积分10
39秒前
小破仁完成签到,获得积分10
40秒前
kimiwanano完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
44秒前
彩色的蓝天完成签到,获得积分10
48秒前
昏睡的妙梦完成签到,获得积分10
48秒前
术语完成签到 ,获得积分10
56秒前
1分钟前
田田完成签到 ,获得积分10
1分钟前
1分钟前
活泼的寒安完成签到 ,获得积分10
1分钟前
1分钟前
结实的丹雪完成签到,获得积分10
1分钟前
杜飞完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
苗条白枫完成签到 ,获得积分10
1分钟前
嗯嗯应助如意元容采纳,获得10
1分钟前
踏实的无敌完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815