Artificial neural network-based sound insulation optimization design of composite floor of high-speed train

人工神经网络 高速列车 复合数 声音(地理) 隔音 计算机科学 工程类 声学 材料科学 人工智能 复合材料 算法 物理 运输工程
作者
Ye Li,Yumei Zhang,Ruiqian Wang,Zhao Tang
标识
DOI:10.1177/09544062241278790
摘要

Increasing the speed of high-speed trains requires the lightweight design of vehicles to meet the economic and ecological efficiency requirements of such trains. However, these objectives conflict with the interior noise control in high-speed trains because the sound insulation of panel structures follows the mass law principle. The train floor, the main train body structure of the high-speed train, is vital for interior noise control because its sound insulation performance directly affects the interior noise levels. Owing to the complexity of the composite floor system, reliable measurement and accurate estimation of its sound insulation performance are often time-consuming and laborious. To address this situation, this study proposes an artificial neural network (ANN)-based model to predict the sound insulation characteristics of a composite floor. First, a sound insulation model of the composite floor is built based on statistical energy analysis (SEA). The sound insulation performance of 200 cases of composite floors is calculated by varying the dimensions of the extruded floor, thickness of the webs, sound-absorbing material, and wooden floor to formulate a sound insulation database of composite floors. Next, an ANN model is introduced and trained on the sound insulation database. The sound insulation prediction results obtained using the ANN model are compared to the prediction results obtained using the experiment to validate its effectiveness. Subsequently, the NSGA-II optimization method is used to optimize the sound insulation structure of the composite floor. Compared with the regular composite floor structure, the optimized structure reduced the mass of the composite floor by 10.93 kg and increased the weight of the sound insulation ( R w ) by 6.3 dB. The proposed method can be an effective, economical, and efficient tool for vehicle designers and can help promote the sound insulation optimization design of high-speed train composite floors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐路灯发布了新的文献求助20
4秒前
晨寒Astra发布了新的文献求助80
4秒前
6秒前
牧紊发布了新的文献求助10
9秒前
12秒前
15秒前
zho发布了新的文献求助10
17秒前
star发布了新的文献求助30
22秒前
22秒前
歪歪踢完成签到 ,获得积分10
23秒前
26秒前
27秒前
28秒前
什么我才是大萌萌完成签到,获得积分0
30秒前
31秒前
gyhmm发布了新的文献求助10
32秒前
zho发布了新的文献求助10
35秒前
35秒前
36秒前
36秒前
大模型应助潇洒的奇异果采纳,获得50
37秒前
大个应助科研通管家采纳,获得10
39秒前
852应助科研通管家采纳,获得10
39秒前
pluto应助科研通管家采纳,获得10
39秒前
杳鸢应助科研通管家采纳,获得30
39秒前
星辰大海应助科研通管家采纳,获得30
39秒前
劲秉应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
杳鸢应助科研通管家采纳,获得30
39秒前
劲秉应助科研通管家采纳,获得10
40秒前
劲秉应助科研通管家采纳,获得10
40秒前
Owen应助科研通管家采纳,获得10
40秒前
劲秉应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
40秒前
李爱国应助orange9采纳,获得10
42秒前
42秒前
42秒前
大个应助拼搏的无心采纳,获得50
42秒前
JJL发布了新的文献求助10
42秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871125
关于积分的说明 8173855
捐赠科研通 2538042
什么是DOI,文献DOI怎么找? 1370245
科研通“疑难数据库(出版商)”最低求助积分说明 645736
邀请新用户注册赠送积分活动 619535