Reshaping curriculum adaptation in the age of artificial intelligence: Mapping teachers' AI‐driven curriculum adaptation patterns

适应(眼睛) 课程 数学教育 心理学 人工智能 计算机科学 教育学 神经科学
作者
Fatih Karataş,Barış Eriçok,Lokman TANRIKULU
出处
期刊:British Educational Research Journal [Wiley]
标识
DOI:10.1002/berj.4068
摘要

Abstract A national curriculum cannot be uniformly applied in all classrooms. Educators frequently adapt the official curriculum to suit their particular circumstances. In exploring the interplay between artificial intelligence (AI) technologies and curriculum adaptation in education, this study bridges a significant gap in the literature by exploring how AI tools influence teachers' strategies for adapting curricula. Employing an explanatory sequential design, the research analyses both qualitative and quantitative data from 440 teachers, using the Curriculum Adaptation Patterns Scale and focus group semi‐structured interviews. Results indicate a balanced approach among teachers towards extending and revising the curriculum, with less emphasis on omission. Notably, curriculum adaptation practices evolve positively with increased professional experience, differ across disciplines, but remain constant across school levels and educational levels. Qualitatively, teachers reported positive experiences using AI, particularly ChatGPT, to make their lessons better fit students' needs. They've used it to omit parts that aren't needed, add more relevant and personalised content, and revise or replace the content. The findings highlight AI's transformative potential in curriculum adaptation, making education more engaging, relevant and personalised. The study contributes to understanding how AI can support effective curriculum implementation and enhance learning experiences in the digital age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CodeCraft应助jasper采纳,获得30
刚刚
Loch发布了新的文献求助10
2秒前
JamesPei应助asuit采纳,获得10
3秒前
斯文败类应助结实的芷文采纳,获得10
3秒前
赤道发布了新的文献求助10
4秒前
小飞鸡完成签到,获得积分10
5秒前
niu完成签到,获得积分10
6秒前
8秒前
8秒前
asuit完成签到,获得积分10
9秒前
9秒前
Yara.H发布了新的文献求助10
10秒前
指定能行完成签到,获得积分20
11秒前
hwq123发布了新的文献求助10
12秒前
可爱的函函应助CYC采纳,获得10
13秒前
13秒前
爆米花应助ora4ks采纳,获得10
14秒前
15秒前
落后凝莲发布了新的文献求助10
15秒前
机智的从霜完成签到 ,获得积分10
16秒前
17秒前
橘子发布了新的文献求助10
18秒前
小马甲应助又欠采纳,获得10
18秒前
会飞的鱼发布了新的文献求助20
18秒前
21秒前
22秒前
无奈抽屉完成签到 ,获得积分10
22秒前
hins完成签到,获得积分10
23秒前
24秒前
赤道完成签到,获得积分10
24秒前
马大翔应助橙c美式采纳,获得50
25秒前
无花果应助CYC采纳,获得10
25秒前
Zhang发布了新的文献求助10
26秒前
27秒前
shirley完成签到,获得积分10
28秒前
fqk完成签到,获得积分10
28秒前
zzz完成签到,获得积分10
29秒前
Hzk_完成签到,获得积分10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244306
求助须知:如何正确求助?哪些是违规求助? 2888006
关于积分的说明 8250968
捐赠科研通 2556504
什么是DOI,文献DOI怎么找? 1384832
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626036