The combination of protein and polyphenol is an effective approach to improve the stability of protein emulsions. The lactoferrin (LF)-(-)-epigallocatechin-3-gallate (EGCG) covalent complex (LF-EGCG) was first prepared by alkali-induced reaction, then the structure and physicochemical properties between LF-EGCG and non-covalent complex (LF + EGCG) were compared, and finally the stability of complexes to fish oil high internal Pickering emulsions (HIPPEs) was tested. Results showed that LF-EGCG had stronger antioxidant activity, higher thermal stability, and better surface wettability than LF + EGCG. Meanwhile, the complexes showed no cytotoxicity within the tested concentration range (12.5-200 μg/mL). The HIPPEs stabilized with LF-EGCG possessed smaller droplet size, higher ζ-potential, and more uniform oil/water proton distribution. Covalent treatment also enhanced the storage, thermal, freeze-thaw and physical stability of LF HIPPEs. Furthermore, due to the higher antioxidant activity and denser microstructure, LF-EGCG HIPPE can more effectively inhibit the oxidation of fish oil.