Surface Science and Engineering for Electrochemical Materials

电化学 曲面(拓扑) 表面工程 科学与工程 工程物理 纳米技术 材料科学 化学 工程类 工程伦理学 数学 物理化学 几何学 电极
作者
Zhiming Liang,Mohammad Sufiyan Nafis,Dakota Rodriguez,Chunmei Ban
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00433
摘要

ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode–electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid–solid or solid–liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure. This allows for achieving full theoretical capacity and maximizing battery material capacity retention with minimal overpotentials. In the past decade, our teams have been working on developing a variety of surface engineering techniques. These include applying atomic and molecular layer deposition (ALD and MLD), templating, doping, and coating via wet-chemical processes to stabilize the surfaces of electrode materials. The aim is to mitigate parasitic side-reactions without impeding charge transfer kinetics, suppress dendrite growth, and ultimately improve the electrode performance.This Account summarizes the research conducted in our research laboratory with an aim to improve battery cycling durability and efficiency by modifying electrode surfaces. We have employed techniques such as ALD, MLD, templating, and wet-chemical processes to illustrate how the stabilized surface improves the performance of lithium-ion (Li-ion), solid-state electrolytes and magnesium-metal (Mg-metal) batteries. For instance, by applying ultrathin layers of inorganic (e.g., Al2O3) or organic–inorganic coatings (e.g., alucone, lithicone, and polyamides) to the surface of LiNixMnyCozO2 (x + y + z = 1, NMC) and silicon (Si) electrodes─usually just a few angstroms or nanometers thick─we have observed notable improvements in cycling efficiency and durability. When using ultrathick electrodes, the traditional electrode fabrication has a problem with high tortuosity, which hinders both rate capability and long-term cycling. To solve this issue, three-dimensional templates have been employed to reduce electrode tortuosity, enabling high-rate performance and long-term cycling. In the case of Mg-metal batteries, the buildup of an insulating MgO layer due to side reactions with electrolytes blocks Mg2+ ion transport, which can ultimately cause the battery to fail. To address this issue, we have developed an artificial solid-electrolyte interface using cyclized polyacrylonitrile and magnesium trifluoromethanesulfonate. This interface prevents the reduction of the carbonate electrolyte while allowing Mg2+ diffusion, ultimately boosting overall cell performance.This Account also discusses the significance of choosing suitable materials and effective surface engineering methods with the objective of enhancing surface properties while preserving the bulk properties of the electrodes. It is believed that surface modification and engineering can not only significantly improve the electrochemical performance of existing battery materials but also facilitate the development of new battery materials that were previously incompatible with current electrolytes. By highlighting these aspects, this Account underscores the transformative potential of surface modification and engineering in battery technology, paving the way for future innovations in energy storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
负责灵萱完成签到 ,获得积分10
1秒前
丫头完成签到,获得积分10
1秒前
5秒前
蓝桉完成签到,获得积分20
5秒前
5秒前
5秒前
hang完成签到,获得积分10
6秒前
张庭玉完成签到 ,获得积分10
6秒前
李哥完成签到,获得积分10
6秒前
Jenny完成签到 ,获得积分10
6秒前
wrscience完成签到,获得积分10
7秒前
8秒前
Hey完成签到 ,获得积分10
8秒前
10秒前
李青荣发布了新的文献求助10
10秒前
栗子完成签到 ,获得积分10
11秒前
Singularity应助njusdf采纳,获得10
11秒前
13秒前
14秒前
爆米花应助光亮的思柔采纳,获得10
16秒前
英俊的铭应助wrscience采纳,获得10
17秒前
czj完成签到,获得积分10
19秒前
泽Y完成签到 ,获得积分10
19秒前
小二郎应助ZH采纳,获得10
20秒前
而发的发布了新的文献求助10
20秒前
丁一完成签到,获得积分10
21秒前
21秒前
李青荣完成签到,获得积分10
21秒前
不配.应助光催化采纳,获得20
21秒前
111完成签到,获得积分20
22秒前
jg完成签到,获得积分10
22秒前
xiaohong完成签到 ,获得积分0
24秒前
苏菲完成签到 ,获得积分10
24秒前
skmksd完成签到,获得积分10
25秒前
爱学习的火龙果完成签到,获得积分10
26秒前
26秒前
SX完成签到,获得积分10
27秒前
jjj完成签到 ,获得积分10
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011