等长运动
可穿戴计算机
地面反作用力
超声波
计算机科学
声学
物理
嵌入式系统
医学
物理疗法
运动学
经典力学
作者
Erica L. King,Shriniwas Patwardhan,Ahmed Bashatah,Meghan K. Magee,Margaret Jones,Qi Wei,Siddhartha Sikdar,Parag V. Chitnis
出处
期刊:Sensors
[MDPI AG]
日期:2024-08-03
卷期号:24 (15): 5023-5023
摘要
Rehabilitation from musculoskeletal injuries focuses on reestablishing and monitoring muscle activation patterns to accurately produce force. The aim of this study is to explore the use of a novel low-powered wearable distributed Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound (SMART-US) device to predict force during an isometric squat task. Participants (N = 5) performed maximum isometric squats under two medical imaging techniques; clinical musculoskeletal motion mode (m-mode) ultrasound on the dominant vastus lateralis and SMART-US sensors placed on the rectus femoris, vastus lateralis, medial hamstring, and vastus medialis. Ultrasound features were extracted, and a linear ridge regression model was used to predict ground reaction force. The performance of ultrasound features to predict measured force was tested using either the Clinical M-mode, SMART-US sensors on the vastus lateralis (SMART-US: VL), rectus femoris (SMART-US: RF), medial hamstring (SMART-US: MH), and vastus medialis (SMART-US: VMO) or utilized all four SMART-US sensors (Distributed SMART-US). Model training showed that the Clinical M-mode and the Distributed SMART-US model were both significantly different from the SMART-US: VL, SMART-US: MH, SMART-US: RF, and SMART-US: VMO models (
科研通智能强力驱动
Strongly Powered by AbleSci AI