Distributed Wearable Ultrasound Sensors Predict Isometric Ground Reaction Force

等长运动 可穿戴计算机 地面反作用力 蹲下 超声波 计算机科学 物理医学与康复 生物医学工程 物理 嵌入式系统 医学 放射科 物理疗法 运动学 经典力学
作者
Erica L. King,Shriniwas Patwardhan,Ahmed Bashatah,Meghan K. Magee,Margaret T. Jones,Qi Wei,Siddhartha Sikdar,Parag V. Chitnis
出处
期刊:Sensors [MDPI AG]
卷期号:24 (15): 5023-5023 被引量:2
标识
DOI:10.3390/s24155023
摘要

Rehabilitation from musculoskeletal injuries focuses on reestablishing and monitoring muscle activation patterns to accurately produce force. The aim of this study is to explore the use of a novel low-powered wearable distributed Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound (SMART-US) device to predict force during an isometric squat task. Participants (N = 5) performed maximum isometric squats under two medical imaging techniques; clinical musculoskeletal motion mode (m-mode) ultrasound on the dominant vastus lateralis and SMART-US sensors placed on the rectus femoris, vastus lateralis, medial hamstring, and vastus medialis. Ultrasound features were extracted, and a linear ridge regression model was used to predict ground reaction force. The performance of ultrasound features to predict measured force was tested using either the Clinical M-mode, SMART-US sensors on the vastus lateralis (SMART-US: VL), rectus femoris (SMART-US: RF), medial hamstring (SMART-US: MH), and vastus medialis (SMART-US: VMO) or utilized all four SMART-US sensors (Distributed SMART-US). Model training showed that the Clinical M-mode and the Distributed SMART-US model were both significantly different from the SMART-US: VL, SMART-US: MH, SMART-US: RF, and SMART-US: VMO models (p < 0.05). Model validation showed that the Distributed SMART-US model had an R2 of 0.80 ± 0.04 and was significantly different from SMART-US: VL but not from the Clinical M-mode model. In conclusion, a novel wearable distributed SMART-US system can predict ground reaction force using machine learning, demonstrating the feasibility of wearable ultrasound imaging for ground reaction force estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小明采纳,获得10
1秒前
ilihe应助mini的yr采纳,获得10
1秒前
1秒前
1秒前
梅夕阳完成签到,获得积分10
2秒前
2秒前
BowieHuang应助尔尔采纳,获得10
2秒前
初雪应助木沐采纳,获得10
3秒前
Lucas应助skycool采纳,获得20
3秒前
mengguzai完成签到,获得积分20
4秒前
KULI完成签到,获得积分20
4秒前
搜集达人应助湛荏染采纳,获得10
4秒前
pufanlg发布了新的文献求助10
5秒前
涵青夏完成签到 ,获得积分10
6秒前
ilihe举报瑶瑶奶昔求助涉嫌违规
6秒前
6秒前
6秒前
6秒前
归一然发布了新的文献求助30
6秒前
仙林AK47完成签到,获得积分10
7秒前
7秒前
机智的早晨完成签到,获得积分10
7秒前
滕擎发布了新的文献求助10
7秒前
大师现在发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
meostay发布了新的文献求助10
7秒前
Zu关注了科研通微信公众号
7秒前
10秒前
zengtx1完成签到,获得积分10
10秒前
Dreamhappy完成签到,获得积分10
10秒前
zsy19完成签到,获得积分10
10秒前
wanci应助LUODAD采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
大模型应助诚心的醉卉采纳,获得10
12秒前
执着的冬瓜完成签到 ,获得积分10
13秒前
13秒前
鑫xin发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225