A shale apparent gas diffusion model under the influence of adsorption effects to analyze microscopic gas diffusion behavior

物理 扩散 页岩气 气体扩散 吸附 热力学 油页岩 化学物理 机械 统计物理学 物理化学 化学 电极 量子力学 工程类 废物管理
作者
Haosheng Song,Bobo Li,Pingping Ye,Chenlang Tang,Xingyi Zeng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:7
标识
DOI:10.1063/5.0220929
摘要

A considerable amount of shale gas is present in an adsorbed state, with the diffusion process, under the influence of adsorption effects, playing a crucial role in the production of shale gas in wells. In this paper, a supercritical adsorption model, including micropore-filling and monolayer adsorption, was first established based on a multiscale pore structure. Furthermore, a shale apparent gas diffusion model, influenced by a real gas effect, multiple adsorption mechanisms, effective stress, adsorption expansion, and temperature, was constructed. The new model has been verified by using isothermal adsorption tests and isobaric diffusion tests in respect of shale. Change mechanisms relating to different types of diffusion coefficients, with respect to temperature and pressure, were also examined. The findings indicated that adsorption effects had certain controlling influence on surface diffusion and total gas diffusion. Moreover, it was thought important that the impact of multiple adsorption mechanisms on the diffusion process should also be considered. The influence of the real gas effect, effective stress, adsorption deformation, and surface diffusion on shale gas diffusion was analyzed. In addition, the scale effect relating to shale gas diffusion was analyzed, from which it was concluded that the diffusion coefficient when cylindrical shale was applied was closer to the environment existing in in situ reservoirs. The results provide new insights into the behaviors of gas diffusion in shale, which is important for gas recovery and production prediction in shale reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱飞槐发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
香蕉诗蕊应助科研通管家采纳,获得10
3秒前
lsl应助科研通管家采纳,获得20
3秒前
香蕉诗蕊应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助好不了一丶采纳,获得10
3秒前
3秒前
yangbo完成签到,获得积分10
4秒前
小小菜鸟完成签到 ,获得积分20
4秒前
123完成签到,获得积分10
5秒前
王帅发布了新的文献求助10
7秒前
危机的绯发布了新的文献求助10
7秒前
鱼鱼完成签到,获得积分10
7秒前
希望天下0贩的0应助lym54采纳,获得10
7秒前
科研通AI6应助木子采纳,获得10
7秒前
7秒前
8秒前
愉快的海完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Azyyyy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812