Subjective and Objective Quality Assessment of Colonoscopy Videos

计算机科学 人工智能 失真(音乐) 能见度 质量(理念) 视频质量 计算机视觉 图像质量 主观视频质量 可视化 透视图(图形) 特征提取 亮度 模式识别(心理学) 图像(数学) 计算机网络 放大器 哲学 公制(单位) 物理 运营管理 带宽(计算) 认识论 光学 经济
作者
Guanghui Yue,Lixin Zhang,Jingfeng Du,Tianwei Zhou,Wei Zhou,Weisi Lin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3461737
摘要

Captured colonoscopy videos usually suffer from multiple real-world distortions, such as motion blur, low brightness, abnormal exposure, and object occlusion, which impede visual interpretation. However, existing works mainly investigate the impacts of synthesized distortions, which differ from real-world distortions greatly. This research aims to carry out an in-depth study for colonoscopy Video Quality Assessment (VQA). In this study, we advance this topic by establishing both subjective and objective solutions. Firstly, we collect 1,000 colonoscopy videos with typical visual quality degradation conditions in practice and construct a multi-attribute VQA database. The quality of each video is annotated by subjective experiments from five distortion attributes (i.e., temporal-spatial visibility, brightness, specular reflection, stability, and utility), as well as an overall perspective. Secondly, we propose a Distortion Attribute Reasoning Network (DARNet) for automatic VQA. DARNet includes two streams to extract features related to spatial and temporal distortions, respectively. It adaptively aggregates the attribute-related features through a multi-attribute association module to predict the quality score of each distortion attribute. Motivated by the observation that the rating behaviors for all attributes are different, a behavior guided reasoning module is further used to fuse the attribute-aware features, resulting in the overall quality. Experimental results on the constructed database show that our DARNet correlates well with subjective ratings and is superior nine state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷若风发布了新的文献求助35
1秒前
FashionBoy应助CCCcc采纳,获得10
1秒前
天天快乐应助战神幽默采纳,获得10
1秒前
2秒前
2秒前
领导范儿应助wshh采纳,获得10
2秒前
科研通AI5应助妖妖采纳,获得10
3秒前
77777发布了新的文献求助10
3秒前
3秒前
李健应助keke采纳,获得10
3秒前
xixi发布了新的文献求助10
4秒前
美羊羊完成签到 ,获得积分10
4秒前
lhp完成签到 ,获得积分10
4秒前
5秒前
搜集达人应助一一采纳,获得10
5秒前
Liangc333完成签到,获得积分10
5秒前
5秒前
cc发布了新的文献求助10
6秒前
含糊的寇完成签到,获得积分10
6秒前
6秒前
zhaopangpang完成签到,获得积分10
6秒前
sanmu发布了新的文献求助100
7秒前
8秒前
8秒前
滴滴哒哒发布了新的文献求助10
8秒前
科研通AI5应助77777采纳,获得10
9秒前
小高同学发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
宋向荣完成签到 ,获得积分10
12秒前
Jason应助5552222采纳,获得10
12秒前
Hello应助天上人间采纳,获得10
13秒前
一一完成签到,获得积分10
13秒前
14秒前
Singularity举报gab求助涉嫌违规
15秒前
王文茹发布了新的文献求助10
16秒前
CCCcc发布了新的文献求助10
16秒前
16秒前
tkp完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952