TFDet: Target-Aware Fusion for RGB-T Pedestrian Detection

行人检测 行人 人工智能 计算机视觉 计算机科学 融合 RGB颜色模型 模式识别(心理学) 工程类 运输工程 语言学 哲学
作者
Xue Zhang,Xiaohan Zhang,Jiangtao Wang,Jiacheng Ying,Zehua Sheng,Heng Yu,Chunguang Li,Hui-Liang Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3443455
摘要

Pedestrian detection plays a critical role in computer vision as it contributes to ensuring traffic safety. Existing methods that rely solely on RGB images suffer from performance degradation under low-light conditions due to the lack of useful information. To address this issue, recent multispectral detection approaches have combined thermal images to provide complementary information and have obtained enhanced performances. Nevertheless, few approaches focus on the negative effects of false positives (FPs) caused by noisy fused feature maps. Different from them, we comprehensively analyze the impacts of FPs on detection performance and find that enhancing feature contrast can significantly reduce these FPs. In this article, we propose a novel target-aware fusion strategy for multispectral pedestrian detection, named TFDet. The target-aware fusion strategy employs a fusion-refinement paradigm. In the fusion phase, we reveal the parallel-and cross-channel similarities in RGB and thermal features and learn an adaptive receptive field to collect useful information from both features. In the refinement phase, we use a segmentation branch to discriminate the pedestrian features from the background features. We propose a correlation-maximum loss function to enhance the contrast between the pedestrian features and background features. As a result, our fusion strategy highlights pedestrian-related features and suppresses unrelated ones, generating more discriminative fused features. TFDet achieves state-of-the-art performance on two multispectral pedestrian benchmarks, KAIST and LLVIP, with absolute gains of 0.65% and 4.1% over the previous best approaches, respectively. TFDet can easily extend to multiclass object detection scenarios. It outperforms the previous best approaches on two multispectral object detection benchmarks, FLIR and M3FD, with absolute gains of 2.2% and 1.9%, respectively. Importantly, TFDet has comparable inference efficiency to the previous approaches and has remarkably good detection performance even under low-light conditions, which is a significant advancement for ensuring road safety. The code will be made publicly available at https://github.com/XueZ-phd/TFDet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgsd完成签到,获得积分10
刚刚
柳叶刀小猪应助SunGuangkai采纳,获得30
1秒前
1秒前
Lucas应助mz采纳,获得10
1秒前
愉悦发布了新的文献求助10
2秒前
领导范儿应助雷霆万钧采纳,获得10
3秒前
陈迹发布了新的文献求助10
4秒前
xfyxxh发布了新的文献求助10
4秒前
咸鱼发布了新的文献求助20
5秒前
Glowing完成签到,获得积分10
7秒前
8秒前
义气的牛青完成签到,获得积分10
8秒前
8秒前
雨er发布了新的文献求助10
10秒前
深情安青应助淡定的天抒采纳,获得10
13秒前
莉亚发布了新的文献求助30
14秒前
14秒前
Chaiyuan完成签到 ,获得积分10
17秒前
17秒前
星辰大海应助yyyy采纳,获得10
18秒前
18秒前
拓小八发布了新的文献求助10
18秒前
852应助水水的很安心采纳,获得10
19秒前
Aynuyoah2024发布了新的文献求助10
19秒前
充电宝应助hony采纳,获得10
22秒前
ding应助栉风沐雨采纳,获得10
22秒前
Owen应助儒雅的不愁采纳,获得10
24秒前
26秒前
26秒前
重要的念文完成签到,获得积分10
26秒前
27秒前
耍酷思烟完成签到,获得积分20
28秒前
Sumia完成签到,获得积分10
30秒前
冰红茶发布了新的文献求助10
30秒前
不安的白开水完成签到,获得积分20
31秒前
31秒前
凌云完成签到,获得积分10
31秒前
可爱的函函应助dablack采纳,获得10
31秒前
32秒前
咚咚发布了新的文献求助10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437