ProtoMix: Augmenting Health Status Representation Learning via Prototype-based Mixup

计算机科学 代表(政治) 人工智能 机器学习 人机交互 法学 政治 政治学
作者
Yongxin Xu,Xinke Jiang,Xu Chu,Yuzhen Xiao,Chaohe Zhang,Hongxin Ding,Junfeng Zhao,Yasha Wang,Bing Xie
标识
DOI:10.1145/3637528.3671937
摘要

With the widespread adoption of electronic health records (EHR) data, deep learning techniques have been broadly utilized for various health prediction tasks. Nevertheless, the labeled data scarcity issue restricts the prediction power of these deep models. To enhance the generalization capability of deep learning models when faced with such situations, a common trend is to train generative adversarial networks (GANs) or diffusion models for data augmentation. However, due to limitations in sample size and potential label imbalance issues, these methods are prone to mode collapse problems. This results in the generation of new samples that fail to preserve the subtype structure within EHR data, thereby limiting their practicality in health prediction tasks that generally require detailed patient phenotyping. Aiming at the above problems, we propose a Prototype-based Mixup method, dubbed ProtoMix, which combines prior knowledge of intrinsic data features from subtype centroids (i.e., prototypes) to guide the synthesis of new samples. Specifically, ProtoMix employs a prototype-guided mixup training task to shift the decision boundary away from the subtypes. Then, ProtoMix optimizes the sampling weights in different areas of the data manifold via a prototype-guided mixup sampling strategy. Throughout the training process, ProtoMix dynamically expands the training distribution using an adaptive mixing coefficient computation method. Experimental evaluations on three real-world datasets demonstrate the efficacy of ProtoMix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小权拳的权完成签到,获得积分10
2秒前
NexusExplorer应助lxy采纳,获得10
3秒前
鱼笙完成签到,获得积分10
6秒前
努力读文献完成签到,获得积分10
7秒前
嘤嘤怪发布了新的文献求助10
9秒前
10秒前
cdercder应助Yinging采纳,获得20
11秒前
我是老大应助缥缈的戒指采纳,获得10
11秒前
sci完成签到,获得积分10
11秒前
11秒前
zhang完成签到,获得积分10
12秒前
思源应助cc采纳,获得10
14秒前
lxy发布了新的文献求助10
15秒前
15秒前
feng1235关注了科研通微信公众号
16秒前
yanshapo发布了新的文献求助10
16秒前
18秒前
19秒前
斯文白梦应助cc采纳,获得10
25秒前
科研通AI5应助独特的听露采纳,获得10
27秒前
yyy完成签到 ,获得积分10
29秒前
30秒前
睡懒觉的啊眠完成签到 ,获得积分10
34秒前
yappy123发布了新的文献求助10
36秒前
科研通AI5应助Cordero采纳,获得50
40秒前
长宁舟完成签到,获得积分20
42秒前
lgold完成签到,获得积分10
43秒前
科研通AI5应助Timing侠采纳,获得10
44秒前
FightingW完成签到,获得积分10
45秒前
beiye完成签到 ,获得积分10
46秒前
46秒前
49秒前
52秒前
Axel完成签到,获得积分10
54秒前
55秒前
56秒前
56秒前
辛勤怀绿完成签到,获得积分10
57秒前
彪壮的银耳汤完成签到 ,获得积分10
58秒前
花无缺发布了新的文献求助10
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669971
求助须知:如何正确求助?哪些是违规求助? 3227372
关于积分的说明 9775297
捐赠科研通 2937523
什么是DOI,文献DOI怎么找? 1609371
邀请新用户注册赠送积分活动 760315
科研通“疑难数据库(出版商)”最低求助积分说明 735785