Sugarcane disease recognition through visible and near-infrared spectroscopy using deep learning assisted continuous wavelet transform-based spectrogram

光谱图 模式识别(心理学) 人工智能 偏最小二乘回归 化学计量学 近红外光谱 小波 光谱学 小波变换 线性判别分析 连续小波变换 化学 计算机科学 离散小波变换 机器学习 光学 物理 量子力学
作者
Pauline Ong,Jinbao Jian,Xiuhua Li,Chengwu Zou,Jianghua Yin,Guodong Ma
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:324: 125001-125001
标识
DOI:10.1016/j.saa.2024.125001
摘要

Utilizing visible and near-infrared (Vis-NIR) spectroscopy in conjunction with chemometrics methods has been widespread for identifying plant diseases. However, a key obstacle involves the extraction of relevant spectral characteristics. This study aimed to enhance sugarcane disease recognition by combining convolutional neural network (CNN) with continuous wavelet transform (CWT) spectrograms for spectral features extraction within the Vis-NIR spectra (380-1400 nm) to improve the accuracy of sugarcane diseases recognition. Using 130 sugarcane leaf samples, the obtained one-dimensional CWT coefficients from Vis-NIR spectra were transformed into two-dimensional spectrograms. Employing CNN, spectrogram features were extracted and incorporated into decision tree, K-nearest neighbour, partial least squares discriminant analysis, and random forest (RF) calibration models. The RF model, integrating spectrogram-derived features, demonstrated the best performance with an average precision of 0.9111, sensitivity of 0.9733, specificity of 0.9791, and accuracy of 0.9487. This study may offer a non-destructive, rapid, and accurate means to detect sugarcane diseases, enabling farmers to receive timely and actionable insights on the crops' health, thus minimizing crop loss and optimizing yields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatislove完成签到,获得积分10
刚刚
刚刚
英俊的铭应助loyal采纳,获得10
刚刚
1秒前
小刘恨香菜完成签到,获得积分10
1秒前
zz完成签到 ,获得积分10
1秒前
大头完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
英俊的铭应助狂野的山雁采纳,获得10
3秒前
3秒前
3秒前
luhui完成签到,获得积分10
4秒前
孙志彪完成签到,获得积分10
4秒前
桐桐应助xh采纳,获得10
5秒前
yoyo发布了新的文献求助10
5秒前
5秒前
严珍珍完成签到 ,获得积分10
5秒前
6秒前
6秒前
常坤发布了新的文献求助10
6秒前
Airy完成签到,获得积分10
7秒前
左丘如萱完成签到,获得积分10
7秒前
andy发布了新的文献求助10
7秒前
8秒前
zwy发布了新的文献求助10
8秒前
大头发布了新的文献求助10
8秒前
老武发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI5应助xiongdi521采纳,获得10
9秒前
自信乐天发布了新的文献求助10
9秒前
完美世界应助冷傲的寻梅采纳,获得10
9秒前
9秒前
gsokok发布了新的文献求助10
9秒前
9秒前
9秒前
jyz发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088