Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach

2019年冠状病毒病(COVID-19) 鉴定(生物学) 免疫系统 期限(时间) 组学 计算生物学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生物 人工智能 计算机科学 机器学习 生物信息学 医学 免疫学 病毒学 疾病 传染病(医学专业) 病理 植物 物理 量子力学 爆发
作者
Jingxin Ren,Qian Gao,Xianchao Zhou,Lei Chen,Wei Guo,Kai‐Yan Feng,Jerry Hu,Tao Huang,Yu-Dong Cai
出处
期刊:Vaccine [Elsevier]
卷期号:42 (23): 126253-126253
标识
DOI:10.1016/j.vaccine.2024.126253
摘要

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨123完成签到,获得积分10
1秒前
2秒前
优美紫槐发布了新的文献求助10
2秒前
3秒前
hahhh7发布了新的文献求助10
4秒前
来日方长完成签到 ,获得积分10
5秒前
5秒前
Jasper应助Lolo采纳,获得10
5秒前
墨123发布了新的文献求助10
6秒前
打发打发的发到付电费完成签到 ,获得积分10
6秒前
Aurora发布了新的文献求助10
7秒前
岑岑岑完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
仁者发布了新的文献求助20
9秒前
9秒前
现实的白猫完成签到,获得积分20
12秒前
13秒前
Muzz发布了新的文献求助10
14秒前
XMH发布了新的文献求助10
15秒前
隐形曼青应助优美紫槐采纳,获得10
15秒前
科目三应助Lendar采纳,获得10
15秒前
彭于晏应助过时的棒棒糖采纳,获得100
16秒前
qhtwld发布了新的文献求助10
20秒前
22秒前
25秒前
lalala完成签到,获得积分10
26秒前
ddd完成签到,获得积分10
26秒前
27秒前
无花果应助1526918042采纳,获得10
27秒前
27秒前
笋笋完成签到,获得积分10
28秒前
Owen应助南枝焙雪采纳,获得10
28秒前
踌躇前半生完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232