Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach

2019年冠状病毒病(COVID-19) 鉴定(生物学) 免疫系统 期限(时间) 组学 计算生物学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生物 人工智能 计算机科学 机器学习 生物信息学 医学 免疫学 病毒学 疾病 传染病(医学专业) 病理 物理 爆发 量子力学 植物
作者
Jingxin Ren,Qian Gao,Xianchao Zhou,Lei Chen,Wei Guo,Kai‐Yan Feng,Jerry Hu,Tao Huang,Yu-Dong Cai
出处
期刊:Vaccine [Elsevier]
卷期号:42 (23): 126253-126253
标识
DOI:10.1016/j.vaccine.2024.126253
摘要

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
激动的xx完成签到 ,获得积分10
4秒前
herpes完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
11秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
纯真保温杯完成签到 ,获得积分10
16秒前
23秒前
酷炫觅双完成签到 ,获得积分10
25秒前
TiY完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
yj完成签到,获得积分10
34秒前
qianci2009完成签到,获得积分0
35秒前
36秒前
prawn218完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
43秒前
海英完成签到,获得积分10
49秒前
合适的平安完成签到 ,获得积分10
55秒前
56秒前
59秒前
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
子凡完成签到 ,获得积分10
1分钟前
rigelfalcon完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
可乐完成签到 ,获得积分10
1分钟前
Ganann完成签到 ,获得积分10
1分钟前
雨竹完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732958
求助须知:如何正确求助?哪些是违规求助? 5344050
关于积分的说明 15322714
捐赠科研通 4878163
什么是DOI,文献DOI怎么找? 2621060
邀请新用户注册赠送积分活动 1570181
关于科研通互助平台的介绍 1526956