Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach

2019年冠状病毒病(COVID-19) 鉴定(生物学) 免疫系统 期限(时间) 组学 计算生物学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生物 人工智能 计算机科学 机器学习 生物信息学 医学 免疫学 病毒学 疾病 传染病(医学专业) 病理 植物 物理 量子力学 爆发
作者
Jingxin Ren,Qian Gao,Xianchao Zhou,Lei Chen,Wei Guo,Kai‐Yan Feng,Jerry Hu,Tao Huang,Yu-Dong Cai
出处
期刊:Vaccine [Elsevier]
卷期号:42 (23): 126253-126253
标识
DOI:10.1016/j.vaccine.2024.126253
摘要

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
nyfz2002发布了新的文献求助10
刚刚
1秒前
Krim完成签到 ,获得积分0
1秒前
2秒前
辣椒油想躺平完成签到,获得积分20
2秒前
筱姐姐发布了新的文献求助10
3秒前
孙晓燕完成签到 ,获得积分10
5秒前
超能力发布了新的文献求助10
5秒前
NikiJu完成签到 ,获得积分10
5秒前
氨气完成签到 ,获得积分10
6秒前
小Z发布了新的文献求助10
6秒前
淡定的冰巧完成签到,获得积分10
6秒前
能干妙竹完成签到,获得积分10
7秒前
7秒前
张景赛完成签到 ,获得积分10
8秒前
高山我梦完成签到,获得积分10
11秒前
1997SD发布了新的文献求助10
12秒前
浮游应助WN采纳,获得10
13秒前
泡泡泡芙完成签到 ,获得积分10
13秒前
超能力完成签到,获得积分10
13秒前
Zoe完成签到,获得积分10
14秒前
徐慕源完成签到,获得积分10
14秒前
摩天大楼完成签到,获得积分10
15秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
17秒前
郑秋英完成签到,获得积分10
17秒前
12完成签到,获得积分10
18秒前
缓慢的煎蛋完成签到,获得积分10
19秒前
玛卡巴卡完成签到,获得积分10
20秒前
21秒前
drleslie完成签到 ,获得积分10
22秒前
和谐的芷天完成签到,获得积分10
22秒前
852应助师震铎采纳,获得10
22秒前
高天雨完成签到 ,获得积分10
22秒前
爆米花应助wang采纳,获得10
23秒前
23秒前
英俊的铭应助1997SD采纳,获得30
23秒前
坚定芯完成签到 ,获得积分10
25秒前
muxueqiu应助玛卡巴卡采纳,获得10
26秒前
老孟完成签到,获得积分10
26秒前
淡定的幻枫完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595937
关于积分的说明 14450753
捐赠科研通 4528891
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653