Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach

2019年冠状病毒病(COVID-19) 鉴定(生物学) 免疫系统 期限(时间) 组学 计算生物学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生物 人工智能 计算机科学 机器学习 生物信息学 医学 免疫学 病毒学 疾病 传染病(医学专业) 病理 植物 物理 量子力学 爆发
作者
Jingxin Ren,Qian Gao,Xianchao Zhou,Lei Chen,Wei Guo,Kai‐Yan Feng,Jerry Hu,Tao Huang,Yu-Dong Cai
出处
期刊:Vaccine [Elsevier]
卷期号:42 (23): 126253-126253
标识
DOI:10.1016/j.vaccine.2024.126253
摘要

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许锦程完成签到,获得积分10
1秒前
CodeCraft应助远坂时辰采纳,获得10
1秒前
aura发布了新的文献求助10
2秒前
我是老大应助曾经的听云采纳,获得10
2秒前
hhhhhh完成签到,获得积分10
2秒前
明亮念梦发布了新的文献求助10
2秒前
user_huang完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
Awesome发布了新的文献求助10
6秒前
7秒前
7秒前
百分之五发布了新的文献求助10
8秒前
TOTORO发布了新的文献求助10
9秒前
zhu发布了新的文献求助10
10秒前
来自三百完成签到,获得积分10
10秒前
10秒前
11完成签到,获得积分10
10秒前
luoliusha完成签到,获得积分10
11秒前
11秒前
传奇3应助yellow采纳,获得10
11秒前
情怀应助越过山丘采纳,获得10
12秒前
昌昌昌发布了新的文献求助10
12秒前
四辈儿完成签到,获得积分10
14秒前
liiy发布了新的文献求助10
15秒前
yang完成签到,获得积分10
15秒前
15秒前
Alan_Mcwave发布了新的文献求助10
16秒前
李爱国应助猜猜我是谁采纳,获得10
16秒前
17秒前
传奇3应助高兴的平露采纳,获得10
17秒前
CipherSage应助TOTORO采纳,获得10
17秒前
18秒前
科研通AI2S应助昌昌昌采纳,获得10
18秒前
科研通AI2S应助昌昌昌采纳,获得10
18秒前
熊本熊完成签到,获得积分10
18秒前
科研通AI2S应助昌昌昌采纳,获得10
18秒前
领导范儿应助昌昌昌采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271