Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach

2019年冠状病毒病(COVID-19) 鉴定(生物学) 免疫系统 期限(时间) 组学 计算生物学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 生物 人工智能 计算机科学 机器学习 生物信息学 医学 免疫学 病毒学 疾病 传染病(医学专业) 病理 物理 爆发 量子力学 植物
作者
Jingxin Ren,Qian Gao,Xianchao Zhou,Lei Chen,Wei Guo,Kai‐Yan Feng,Jerry Hu,Tao Huang,Yu-Dong Cai
出处
期刊:Vaccine [Elsevier BV]
卷期号:42 (23): 126253-126253
标识
DOI:10.1016/j.vaccine.2024.126253
摘要

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nan完成签到,获得积分10
2秒前
vippp完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
可靠的安寒完成签到,获得积分10
4秒前
花花完成签到,获得积分10
5秒前
冷傲的太英完成签到 ,获得积分10
5秒前
痴情的飞绿完成签到 ,获得积分10
5秒前
soar完成签到 ,获得积分10
7秒前
小泓完成签到,获得积分10
7秒前
1111关注了科研通微信公众号
7秒前
xch完成签到,获得积分10
8秒前
MaYi完成签到,获得积分10
9秒前
myron完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助50
10秒前
科研三轮车完成签到,获得积分10
11秒前
沉静胜完成签到,获得积分10
12秒前
Kinn完成签到,获得积分10
14秒前
清风徐来完成签到,获得积分10
14秒前
传奇3应助爱微笑的树懒采纳,获得10
14秒前
一只蓉馍馍完成签到,获得积分10
14秒前
自然的哈密瓜完成签到,获得积分10
15秒前
666999完成签到,获得积分10
15秒前
蒋磊完成签到 ,获得积分10
15秒前
mumuaidafu完成签到 ,获得积分10
16秒前
1111发布了新的文献求助10
16秒前
yu完成签到,获得积分10
17秒前
gzmejiji完成签到 ,获得积分10
17秒前
13击完成签到,获得积分10
18秒前
hhl完成签到,获得积分10
18秒前
完美世界应助今天他采纳,获得10
19秒前
20秒前
kangkang发布了新的文献求助30
20秒前
学习学习学习完成签到,获得积分10
20秒前
冰阔罗发布了新的文献求助10
21秒前
21秒前
21秒前
高高的采蓝完成签到 ,获得积分20
23秒前
细嗅蔷薇完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365