Dual-Domain Cooperative Recovery of Atmospheric Turbulence Degradation Images

环境科学 降级(电信) 湍流 领域(数学分析) 对偶(语法数字) 大气湍流 气象学 计算机科学 物理 电信 数学 艺术 数学分析 文学类
作者
Jianxiao Qiu,Runbo Jiang,Wenwen Meng,Dongfeng Shi,Bingzhang Hu,Yingjian Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 2972-2972
标识
DOI:10.3390/rs16162972
摘要

Atmospheric turbulence is a key factor contributing to data distortion in mid-to-long-range target observation tasks. Neural networks have become a powerful tool for dealing with such problems due to their strong ability to fit nonlinearities in the spatial domain. However, the degradation in data is not confined solely to the spatial domain but is also present in the frequency domain. In recent years, the academic community has come to recognize the significance of frequency domain information within neural networks. There remains a gap in research on how to combine dual-domain information to reconstruct high-quality images in the field of blind turbulence image restoration. Drawing upon the close association between spatial and frequency domain degradation information, we introduce a novel neural network architecture, termed Dual-Domain Removal Turbulence Network (DDRTNet), designed to improve the quality of reconstructed images. DDRTNet incorporates multiscale spatial and frequency domain attention mechanisms, combined with a dual-domain collaborative learning strategy, effectively integrating global and local information to achieve efficient restoration of atmospheric turbulence-degraded images. Experimental findings demonstrate significant advantages in performance for DDRTNet compared to existing methods, validating its effectiveness in the task of blind turbulence image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
专注巨人完成签到,获得积分10
刚刚
张耀文发布了新的文献求助10
1秒前
开心超人发布了新的文献求助10
1秒前
Bryan应助minagao采纳,获得10
1秒前
科研通AI5应助ramon采纳,获得10
1秒前
想睡觉的小笼包完成签到 ,获得积分10
2秒前
2秒前
MMMM完成签到,获得积分10
2秒前
NexusExplorer应助柳娅茹采纳,获得10
3秒前
zhangyu应助callmecjh采纳,获得10
3秒前
4秒前
4秒前
拉长的冷霜完成签到 ,获得积分10
5秒前
5秒前
burn完成签到,获得积分10
5秒前
MMMM发布了新的文献求助10
5秒前
辰123发布了新的文献求助10
6秒前
yx_cheng应助zhaxiao采纳,获得10
6秒前
微笑孤云应助zhaxiao采纳,获得10
6秒前
123发布了新的文献求助30
7秒前
凤梨发布了新的文献求助10
7秒前
科研通AI2S应助shy采纳,获得10
7秒前
8秒前
等待映安完成签到,获得积分10
8秒前
科研通AI2S应助樱桃小王子采纳,获得10
9秒前
9秒前
牡丹皮炭发布了新的文献求助10
10秒前
10秒前
小鱼鱼发布了新的文献求助10
12秒前
PengHu完成签到,获得积分10
13秒前
zjw1997完成签到,获得积分20
13秒前
znn123发布了新的文献求助10
14秒前
JamesPei应助ly采纳,获得10
15秒前
山色青完成签到,获得积分10
16秒前
16秒前
传奇3应助积极以云采纳,获得10
16秒前
傲娇的曼香完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014