Identifying neuroimaging biomarkers in major depressive disorder using machine learning algorithms and functional near-infrared spectroscopy (fNIRS) during verbal fluency task

功能近红外光谱 神经影像学 口语流利性测试 重性抑郁障碍 心理学 背外侧前额叶皮质 人工智能 听力学 临床心理学 计算机科学 认知心理学 精神科 神经心理学 医学 认知 前额叶皮质
作者
Lingyun Mao,Xin Hong,Maorong Hu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:365: 9-20
标识
DOI:10.1016/j.jad.2024.08.082
摘要

One of the most prevalent psychiatric disorders is major depressive disorder (MDD), which increases the probability of suicidal ideation or untimely demise. Abnormal frontal hemodynamic changes detected by functional near-infrared spectroscopy (fNIRS) during verbal fluency task (VFT) have the potential to be used as an objective indicator for assessing clinical symptoms. However, comprehensive quantitative and objective assessment instruments for individuals who exhibit symptoms suggestive of depression remain undeveloped. Drawing from a total of 467 samples in a large-scale dataset comprising 289 MDD patients and 178 healthy controls, fNIRS measurements were obtained throughout the VFT. To identify unique MDD biomarkers, this research introduced a data representation approach for extracting spatiotemporal features from fNIRS signals, which were subsequently utilized as potential predictors. Machine learning classifiers (e.g., Gradient Boosted Decision Trees (GBDT) and Multilayer Perceptron) were implemented to assess the ability to predict selected features. The mean and standard deviation of the cross-validation indicated that the GBDT model, when combined with the 180-feature pattern, distinguishes patients with MDD from healthy controls in the most effective manner. The accuracy of correct classification for the test set was 0.829 ± 0.053, with an AUC of 0.895 (95 % CI: 0.864-0.925) and a sensitivity of 0.914 ± 0.051. Channels that made the most important contribution to the identification of MDD were identified using Shapley Additive Explanations method, located in the frontopolar area and the dorsolateral prefrontal cortex, as well as pars triangularis Broca's area. Assessment of abnormal prefrontal activity during the VFT in MDD serves as an objectively measurable biomarker that could be utilized to evaluate cognitive deficits and facilitate early screening for MDD. The model suggested in this research could be applied to large-scale case-control fNIRS datasets to detect unique characteristics of MDD and offer clinicians an objective biomarker-based analytical instrument to assist in the evaluation of suspicious cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助美丽柠檬采纳,获得30
刚刚
连安阳完成签到,获得积分10
刚刚
刚刚
寒冷的天亦完成签到,获得积分10
刚刚
1秒前
哎哟很烦完成签到,获得积分10
1秒前
莱雅lyre完成签到,获得积分10
1秒前
1秒前
qaplay完成签到 ,获得积分0
3秒前
阿尔忒弥斯完成签到,获得积分10
3秒前
broky完成签到,获得积分10
3秒前
手摇铃完成签到,获得积分10
3秒前
zjw完成签到,获得积分10
4秒前
薛洁洁完成签到 ,获得积分10
4秒前
liansj发布了新的文献求助10
4秒前
直到星星打烊完成签到,获得积分20
4秒前
会飞的鱼完成签到 ,获得积分10
5秒前
5秒前
5秒前
coffeecoffee完成签到,获得积分10
6秒前
6秒前
夏阁发布了新的文献求助10
6秒前
7秒前
7秒前
李友健完成签到 ,获得积分10
8秒前
ASZXDW完成签到,获得积分10
10秒前
Razin完成签到,获得积分10
11秒前
美丽梦秋完成签到,获得积分10
11秒前
科研通AI2S应助sunwsmile采纳,获得10
11秒前
Ray完成签到 ,获得积分10
11秒前
Euclid完成签到,获得积分10
12秒前
willz发布了新的文献求助10
12秒前
满城烟沙完成签到 ,获得积分10
13秒前
夏阁完成签到,获得积分10
13秒前
13秒前
怡然的小凝完成签到,获得积分10
14秒前
14秒前
14秒前
熊猫小宇完成签到,获得积分10
15秒前
丈八二桃完成签到,获得积分10
15秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384