已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection

计算机科学 图形 目标检测 编码器 数据挖掘 正规化(语言学) 人工智能 帧(网络) 机器学习 模式识别(心理学) 理论计算机科学 电信 操作系统
作者
Yifan Zhang,Zhiyu Zhu,Junhui Hou,Dapeng Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10614-10628
标识
DOI:10.1109/tpami.2024.3443335
摘要

The Detection Transformer (DETR) has revolutionized the design of CNN-based object detection systems, showcasing impressive performance. However, its potential in the domain of multi-frame 3D object detection remains largely unexplored. In this paper, we present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection by addressing three key aspects specifically tailored for this task. First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network, which represents queries as nodes in a graph and enables effective modeling of object interactions within a social context. To solve the problem of missing hard cases in the proposed output of the encoder in the current frame, we incorporate the output of the previous frame to initialize the query input of the decoder. Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match. And similar queries are insufficiently suppressed and turn into redundant prediction boxes. To address this issue, our proposed IoU regularization term encourages similar queries to be distinct during the refinement. Through extensive experiments, we demonstrate the effectiveness of our approach in handling challenging scenarios, while incurring only a minor additional computational overhead.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助贾克斯采纳,获得10
刚刚
2秒前
2秒前
大模型应助mini采纳,获得10
3秒前
白白完成签到,获得积分10
4秒前
skyer1发布了新的文献求助10
7秒前
7秒前
xiaolan发布了新的文献求助10
9秒前
10秒前
12秒前
Y1234应助犹豫曼岚采纳,获得10
14秒前
英俊的铭应助Ting采纳,获得10
14秒前
LaLune发布了新的文献求助10
14秒前
15秒前
sunset完成签到,获得积分10
15秒前
顾矜应助你爹采纳,获得10
15秒前
秋墨关注了科研通微信公众号
16秒前
雨月残心发布了新的文献求助10
17秒前
20秒前
Hello应助jxhxsca采纳,获得10
20秒前
lalalatiancai发布了新的文献求助10
21秒前
21秒前
蒸蒸日上发布了新的文献求助10
21秒前
贾克斯完成签到,获得积分10
21秒前
22秒前
24秒前
24秒前
浦肯野应助Anquan采纳,获得30
24秒前
26秒前
明亮无颜发布了新的文献求助10
26秒前
北海未暖发布了新的文献求助10
27秒前
你爹完成签到,获得积分10
27秒前
JamesPei应助LM879采纳,获得10
27秒前
28秒前
蝈蝈蝈完成签到 ,获得积分10
28秒前
NPC-CBI完成签到,获得积分10
28秒前
你爹发布了新的文献求助10
30秒前
碎冰发布了新的文献求助10
31秒前
31秒前
科研通AI5应助sunset采纳,获得10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477191
求助须知:如何正确求助?哪些是违规求助? 3068711
关于积分的说明 9109134
捐赠科研通 2760134
什么是DOI,文献DOI怎么找? 1514673
邀请新用户注册赠送积分活动 700422
科研通“疑难数据库(出版商)”最低求助积分说明 699487