Data augmentation using a 1D-CNN model with MFCC/MFMC features for speech emotion recognition

语音识别 Mel倒谱 计算机科学 情绪识别 人工智能 模式识别(心理学) 特征提取
作者
T. Mary Little Flower,Thirasama Jaya,S. Christopher Ezhil Singh
出处
期刊:Automatika [Taylor & Francis]
卷期号:65 (4): 1325-1338
标识
DOI:10.1080/00051144.2024.2371249
摘要

Speech emotion recognition (SER) is attractive in several domains, such as automated translation, call centres, intelligent healthcare, and human–computer interaction. Deep learning models for emotion identification need considerable labelled data, which is only sometimes available in the SER industry. A database needs enough speech samples, good features, and a better classifier to identify emotions efficiently. This study uses data augmentation to enhance the amount of input voice samples and address the data shortage issue. The database capacity increases by adding white noise to the speech signals by data augmentation. In this work, the Mel-frequency Cepstral Coefficient (MFCC) and Mel-frequency Magnitude Coefficient (MFMC) features, along with a one-dimensional convolutional neural network (1D-CNN), are used to classify speech emotions. The datasets utilized to estimate the model's enactment were AESDD, CAFE, EmoDB, IEMOCAP, and MESD. The data augmentation with the 1D-CNN (MFMC) model performed best, with an average accuracy of 99.2% for AESDD, 99.5% for CAFE, 97.5% for EmoDB, 92.4% for IEMOCAP and 96.9% for the MESD database. The proposed 1D-CNN (MFMC) with data augmentation outperforms the 1D-CNN (MFCC) without data augmentation in emotion recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助易达采纳,获得30
刚刚
ding应助优美水彤采纳,获得10
1秒前
zihanwang应助ll采纳,获得10
1秒前
deng完成签到 ,获得积分10
1秒前
xslj发布了新的文献求助10
2秒前
2秒前
李存完成签到,获得积分10
3秒前
博弈春秋发布了新的文献求助10
4秒前
展会恩完成签到,获得积分10
4秒前
5秒前
科研通AI5应助喝杯水再走采纳,获得10
5秒前
zihanwang应助鳗鱼不尤采纳,获得30
6秒前
Lu完成签到 ,获得积分10
7秒前
yehaidadao发布了新的文献求助30
7秒前
上官若男应助万物更始采纳,获得10
8秒前
10秒前
DNAdamage完成签到,获得积分10
11秒前
鹿茸与共发布了新的文献求助10
11秒前
12秒前
koitoyu完成签到,获得积分10
12秒前
xslj完成签到,获得积分10
13秒前
13秒前
全职法师刘海柱完成签到,获得积分10
14秒前
竹筏过海应助戚鹏举采纳,获得30
14秒前
14秒前
赘婿应助季春九采纳,获得20
14秒前
16秒前
AixGnad发布了新的文献求助10
17秒前
18秒前
19秒前
柒辞完成签到,获得积分10
19秒前
20秒前
zy95282发布了新的文献求助10
20秒前
20秒前
20秒前
幸福的雪枫完成签到,获得积分10
21秒前
22秒前
WHHW发布了新的文献求助10
22秒前
AixGnad完成签到,获得积分10
23秒前
njupt连赛通完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075