Nyalaliska W. Utomo,Shifeng Hong,Ritwick Sinha,Keun‐il Kim,Yue Deng,Prince Ochonma,Minori G. Kitahata,Regina García-Méndez,Yong Lak Joo,Lynden A. Archer
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)] 日期:2024-07-05卷期号:10 (27)被引量:9
Solid-state electrolytes (SSEs) are challenged by complex interfacial chemistry and poor ion transport through the interfaces they form with battery electrodes. Here, we investigate a class of SSE composed of micrometer-sized lithium oxide (Li 2 O) particles dispersed in a polymerizable 1,3-dioxolane (DOL) liquid. Ring-opening polymerization (ROP) of the DOL by Lewis acid salts inside a battery cell produces polymer-inorganic hybrid electrolytes with gradient properties on both the particle and battery cell length scales. These electrolytes sustain stable charge-discharge behavior in Li||NCM811 and anode-free Cu||NCM811 electrochemical cells. On the particle length scale, Li 2 O retards ROP, facilitating efficient ion transport in a fluid-like region near the particle surface. On battery cell length scales, gravity-assisted settling creates physical and electrochemical gradients in the hybrid electrolytes. By means of electrochemical and spectroscopic analyses, we find that Li 2 O particles participate in a reversible redox reaction that increases the effective CE in anode-free cells to values approaching 100%, enhancing battery cycle life.