材料科学
等离子体子
钙钛矿(结构)
锡
纳米颗粒
纳米技术
晶体生长
光电子学
化学工程
结晶学
冶金
化学
工程类
作者
Oleksii Omelianovych,Sanjay Sandhu,Mensah Appiagyei Ewusi,Liudmila L. Larina,Byeonggwan Kim,Ba Thong Trinh,Ádám Szániel,Ilsun Yoon,Jae‐Joon Lee,Ho‐Suk Choi
标识
DOI:10.1002/adfm.202407343
摘要
Abstract Incorporating noble‐metal plasmonic nanoparticles (NPs) enhances the optoelectronic properties of perovskite solar cells (PSCs) but at a higher cost. In this work, the overlooked potential of refractory plasmonic materials is highlighted as a cost‐effective alternative additive in PSC research. This investigation aims to stimulate interest in this area by showcasing the theoretical and practical impacts of TiN plasmonic NPs when integrated into PSCs. TiN plasmonic NPs present a cost‐effective yet underexplored option. This study explores the impact of TiN NPs on PSCs through theoretical and experimental approaches. Finite‐difference time‐domain (FDTD) optical simulations and empirical data indicate that TiN NPs increase absorption and reduce reflectance in PSCs, driven by surface plasmon resonance and the significant growth of perovskite grains from 450 to 1400 nm. These NPs also regulate the perovskite crystallization rate by adsorbing DMF/DMSO, fostering larger grain formation. Improved band alignment and decreased trap states enhance charge transport and diminish non‐radiative recombination losses. As a result, PSC efficiency with optimal TiN NP concentration increased from 19.07% to 21.37%. Additionally, TiN‐enhanced PSCs display better stability, retaining 98.1% of their original PCE after 31 days under ambient conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI