A Fast Multi-Objective Optimization Method for Control Parameters of High-Speed Maglev Vehicle-Bridge System

磁悬浮列车 桥(图论) 控制理论(社会学) 工程类 汽车工程 控制(管理) 计算机科学 电气工程 人工智能 医学 内科学
作者
Xiumeng Bu,Lidong Wang,Yan Han,Hanyun Liu,Peng Hu,C.S. Cai
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
被引量:1
标识
DOI:10.1142/s0219455425502062
摘要

A fast multi-objective optimization method (FMOOM) is proposed by optimizing control parameters to improve the dynamic performance of a high-speed maglev vehicle–bridge system. This approach involves generating the corresponding dynamic response to the sampled control parameters using a theoretical model of a high-speed maglev vehicle–bridge system, followed by establishing an adaptive surrogate model for the relationship between the control parameters and the dynamic response extrema. In the second step, we combine the adaptive surrogate model and the multi-objective gradient-based optimizer (MOGBO) algorithm to obtain the Pareto solution set satisfying different performance indexes. Additionally, the control parameters are optimized using the fuzzy comprehensive evaluation method. In the numerical simulation, we investigate five maglev trains and ten-span simply supported beam bridges and the theoretical model is verified by comparing the calculations with the measured results. The optimization effect of FMOOM is analyzed under different working conditions. The results show that the adaptive surrogate model has good prediction accuracy based on the radial basis function. Furthermore, the Pareto solution distribution of different schemes using FMOOM is reasonable, and the optimization results are as expected. Compared with the reference scheme, the dynamic response of the maglev vehicle–bridge system is smaller after being subjected to FMOOM optimization, and the six performance indexes are dramatically improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇立辉关注了科研通微信公众号
1秒前
小欣发布了新的文献求助10
1秒前
面包树完成签到,获得积分10
1秒前
NexusExplorer应助aladi1011采纳,获得10
1秒前
无花果应助wnw采纳,获得10
2秒前
2秒前
李爱国应助993494543采纳,获得10
3秒前
3秒前
张鸿杰完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
duoduo完成签到,获得积分10
5秒前
5秒前
xxy完成签到,获得积分10
5秒前
since完成签到,获得积分20
5秒前
H0000驳回了烟花应助
5秒前
少年游完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
aerou完成签到,获得积分20
5秒前
锥子完成签到,获得积分10
6秒前
田様应助贰什柒采纳,获得10
6秒前
wuyuzegang完成签到,获得积分0
6秒前
6秒前
陈丽媛发布了新的文献求助10
7秒前
一一完成签到,获得积分10
7秒前
slsdy完成签到,获得积分10
8秒前
岩岫清风完成签到,获得积分10
8秒前
jodie0105完成签到,获得积分10
8秒前
独特烙发布了新的文献求助10
8秒前
wanci应助大力衫采纳,获得10
8秒前
852应助davis采纳,获得10
8秒前
顾矜应助林白采纳,获得10
9秒前
moon完成签到 ,获得积分10
9秒前
YUYAN发布了新的文献求助10
9秒前
洗衣机别洗鞋完成签到,获得积分10
9秒前
铱铱的胡萝卜完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242