A Fast Multi-Objective Optimization Method for Control Parameters of High-Speed Maglev Vehicle-Bridge System

磁悬浮列车 桥(图论) 控制理论(社会学) 工程类 汽车工程 控制(管理) 计算机科学 电气工程 人工智能 医学 内科学
作者
Xiumeng Bu,Lidong Wang,Yan Han,Hanyun Liu,Peng Hu,C.S. Cai
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
被引量:1
标识
DOI:10.1142/s0219455425502062
摘要

A fast multi-objective optimization method (FMOOM) is proposed by optimizing control parameters to improve the dynamic performance of a high-speed maglev vehicle–bridge system. This approach involves generating the corresponding dynamic response to the sampled control parameters using a theoretical model of a high-speed maglev vehicle–bridge system, followed by establishing an adaptive surrogate model for the relationship between the control parameters and the dynamic response extrema. In the second step, we combine the adaptive surrogate model and the multi-objective gradient-based optimizer (MOGBO) algorithm to obtain the Pareto solution set satisfying different performance indexes. Additionally, the control parameters are optimized using the fuzzy comprehensive evaluation method. In the numerical simulation, we investigate five maglev trains and ten-span simply supported beam bridges and the theoretical model is verified by comparing the calculations with the measured results. The optimization effect of FMOOM is analyzed under different working conditions. The results show that the adaptive surrogate model has good prediction accuracy based on the radial basis function. Furthermore, the Pareto solution distribution of different schemes using FMOOM is reasonable, and the optimization results are as expected. Compared with the reference scheme, the dynamic response of the maglev vehicle–bridge system is smaller after being subjected to FMOOM optimization, and the six performance indexes are dramatically improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
1秒前
2秒前
3秒前
阳光发布了新的文献求助10
3秒前
反复发作发布了新的文献求助10
5秒前
5秒前
苗条发箍完成签到 ,获得积分10
5秒前
打打应助Irene采纳,获得10
6秒前
Momomo应助川彐采纳,获得10
6秒前
芒琪发布了新的文献求助10
6秒前
上官若男应助听风者采纳,获得10
7秒前
黑黑黑完成签到,获得积分10
7秒前
sypbrooks完成签到,获得积分10
7秒前
刻苦的菀完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
沧海一粟完成签到,获得积分10
10秒前
M3L2完成签到,获得积分10
11秒前
酷波er应助小米采纳,获得10
11秒前
12秒前
田様应助Zero采纳,获得10
14秒前
我是老大应助yeandpeng采纳,获得10
15秒前
姜玲完成签到,获得积分10
15秒前
叶雪怡完成签到 ,获得积分10
16秒前
17秒前
11完成签到,获得积分10
18秒前
小珂完成签到,获得积分10
18秒前
20秒前
20秒前
20秒前
粱夏烟完成签到,获得积分10
21秒前
ScholarZmm完成签到,获得积分10
22秒前
星辰大海应助阳光采纳,获得10
22秒前
24秒前
lili发布了新的文献求助10
24秒前
Zero完成签到,获得积分10
25秒前
得失心的诅咒完成签到 ,获得积分10
25秒前
上官若男应助安南采纳,获得10
25秒前
26秒前
刻苦的菀发布了新的文献求助10
26秒前
斜阳西下柳缠锦完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365