催化作用
材料科学
碳纤维
化学工程
多孔性
催化剂载体
石墨
复合材料
有机化学
化学
复合数
工程类
作者
Jin Yang,Yupeng Wu,Jun Shi,Huimin Liu,Zhiqiang Liu,Qinwen You,Xinxin Li,Linchuan Cong,Debo Liu,Fangbing Liu,Yue Jiang,Nan Lin,Wenli Zhang,Haibo Lin
标识
DOI:10.1021/acsami.4c07003
摘要
As a complex three-phase heterogeneous catalyst, the oxygen reduction reaction (ORR) catalyst activity is determined by the interfacial and surface structures and chemical state of the catalyst support. As a typical biomass carbon-based support, rice husk-based porous carbon (RHPC) has natural unique hierarchical porous structures, which easily regulate the microstructure and surface properties. This study explored the correlative effects of RHPC structure and surface properties on ORR catalytic activity through the typical modification methods, namely, alkali etching, high temperature, oxidation, and ball milling. The various factors for the joint effects are defined as the specific surface area, oxygen-containing functional groups, graphite edge defects, resistivity, and contact angle. The analysis of such joint influences is difficult to quantitatively evaluate due to the large number of experimental factors and small sample sizes. Partial least-squares (PLS) can better deal with such problems. Therefore, a PLS regression model was established to evaluate the relative weight of each factor on the catalytic activity for the RHPC-based support catalysts. The results reveal that the regression coefficients of four factors yield similar magnitude for the effect of the half-wave potential (
科研通智能强力驱动
Strongly Powered by AbleSci AI