A Single-layer dense convolutional reversible residual network for bearing fault diagnosis based on differential local adaptive

残余物 差速器(机械装置) 断层(地质) 图层(电子) 计算机科学 方位(导航) 材料科学 算法 人工智能 复合材料 物理 地质学 地震学 热力学
作者
Wei Sun,Kexin Chen,Yue Zhao,Wenhua Gao,Zengshou Dong,Lin Kang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016210-016210
标识
DOI:10.1088/1361-6501/ad8d71
摘要

Abstract For the cross-domain fault diagnosis of industrial bearings under different working conditions and noise, most current domain adaptation methods in transfer learning only focus on either marginal distribution alignment or conditional distribution alignment. They fail to adequately combine discriminative and global distribution information. Furthermore, the majority of models have a very high parameter count and memory utilization, which makes it challenging to use them in real-world industrial situations. Therefore, a single-layer densely connected reversible residual network based on differential local adaptation is proposed. This network is more competitive in industrial applications than other fault diagnosis models since it not only uses less memory and has fewer parameters, but it also shows superior cross-domain fault diagnostic capacity in noisy situations. Additionally, to extract discriminative and global domain-invariant features, a domain adaptation module is created that takes into account local and global data distributions differently. Multiple transfer tasks and two distinct datasets are used to validate the model. Comparative tests reveal that the suggested model uses less memory and requires fewer parameters to attain good accuracy and transferability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solarenergy发布了新的文献求助10
刚刚
zzz完成签到,获得积分10
1秒前
2秒前
司空豁发布了新的文献求助10
2秒前
cr完成签到,获得积分10
3秒前
盼盼完成签到 ,获得积分10
4秒前
李1发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
CR7完成签到,获得积分0
5秒前
Ava应助知性的采珊采纳,获得10
6秒前
烟花应助自由的寒风采纳,获得10
6秒前
8秒前
bobo发布了新的文献求助10
8秒前
呆萌棒棒糖完成签到,获得积分10
9秒前
9秒前
水木应助王大D采纳,获得10
9秒前
10秒前
10秒前
12秒前
彭于晏应助和谐的阁采纳,获得10
13秒前
ljyimu完成签到,获得积分10
13秒前
JW关闭了JW文献求助
14秒前
bingo发布了新的文献求助10
15秒前
司空豁发布了新的文献求助10
15秒前
求助完成签到,获得积分10
15秒前
Orange应助小十七果采纳,获得10
16秒前
lll发布了新的文献求助10
16秒前
Roy发布了新的文献求助10
16秒前
16秒前
NanArtist完成签到,获得积分10
17秒前
Twilight完成签到,获得积分10
17秒前
wu8577应助港崽宝宝采纳,获得10
19秒前
Booty发布了新的文献求助10
19秒前
李健的小迷弟应助清新的Q采纳,获得10
20秒前
WTaMi发布了新的文献求助10
20秒前
21秒前
慕青应助柔弱的不二采纳,获得10
21秒前
mr_beard完成签到 ,获得积分10
22秒前
Eton完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105