神经退行性变
兴奋剂
神经科学
炎症体
疾病
帕金森病
医学
运动症状
生物
受体
内科学
作者
Taeyoung Ha,Jae-Bong Kim,Yeji Kim,Sang Myun Park,Keun‐A Chang
标识
DOI:10.1016/j.phrs.2024.107432
摘要
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracellular α-synuclein (ɑ-syn) aggregates known as Lewy bodies and Lewy neurites. Levels of polyunsaturated fatty acids (PUFAs) have previously been shown to be reduced in the SN of PD patients. G protein-coupled receptor 40 (GPR40) serves as a receptor for PUFAs, playing a role in neurodevelopment and neurogenesis. Additionally, GPR40 has been implicated in several neuropathological conditions, such as apoptosis and inflammation, suggesting its potential as a therapeutic target in PD. In this study, we investigated the neuroprotective effects of the GPR40 agonist, TUG469 in PD models. Our results demonstrated that TUG469 reduces the neurotoxicity induced by 6-OHDA in SH-SY5Y cells. In 6-OHDA-induced PD model mice, TUG469 treatment improved motor impairment, preserved dopaminergic fibers and cell bodies in the striatum (ST) or SN, and attenuated 6-OHDA-induced microgliosis and astrogliosis in the brain. Furthermore, in a PD model involving the injection of mouse ɑ-syn fibrils into the brain (mPFFs-PD model), TUG469 treatment reduced the levels of pSer129 ɑ-syn, and decreased microgliosis and astrogliosis. Our investigation also revealed that TUG469 modulates inflammasome activation, apoptosis, and autophagy in the 6-OHDA-PD model, as evidenced by the results of RNA-seq and western blotting analyses. In summary, our findings highlight the neuroprotective effects of GPR40 agonists on dopaminergic neurons and their potential as therapeutic agents for PD. These results underscore the importance of targeting GPR40 in PD treatment, particularly in mitigating neuroinflammation and preserving neuronal integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI